참고문헌
- Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71-96. https://doi.org/10.3322/CA.2007.0010
- Hu WP, Yu HS, Chen YR, Tsai YM, Chen YK, Liao CC, Chang LS, Wang JJ. Synthesis and biological evaluation of thiobenzanilides as anticancer agents. Bioorg Med Chem. 2008;16: 5295-5302. https://doi.org/10.1016/j.bmc.2008.03.003
- Kemnitzer W, Jiang S, Wang Y, Kasibhatla S, Crogan-Grundy C, Bubenik M, Labrecque D, Denis R, Lamothe S, Attardo G, Gourdeau H, Tseng B, Drewe J, Cai SX. Discovery of 4-aryl- 4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based HTS assay. Part 5: modifications of the 2- and 3-positions. Bioorg Med Chem Lett. 2008;18:603-607. https://doi.org/10.1016/j.bmcl.2007.11.078
- Wordenmam L, Mitchison TJ. Dynamics of microtubule assembly in vivo. Modern Cell Biology. 1994;13:287-301.
- Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253-265. https://doi.org/10.1038/nrc1317
- Xia Y, Yang ZY, Xia P, Bastow KF, Tachibana Y, Kuo SC, Hamel E, Hackl T, Lee KH. Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2',3',4'-substituted-1,2,3,4- tetrahydro-2-phenyl-4-quinolones as a new class of antimitotic antitumor agents. J Med Chem. 1998;41:1155-1162. https://doi.org/10.1021/jm9707479
- Rowinsky EK, Donehower RC. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther. 1991;52:35-84. https://doi.org/10.1016/0163-7258(91)90086-2
- Verweij J, Clavel M, Chevalier B. Paclitaxel (Taxol) and docetaxel (Taxotere): not simply two of a kind. Ann Oncol. 1994;5: 495-505. https://doi.org/10.1093/oxfordjournals.annonc.a058903
- Shi Q, Chen K, Li L, Chang JJ, Autry C, Kozuka M, Konoshima T, Estes JR, Lin CM, Hamel E. Antitumor agents, 154. Cytotoxic and antimitotic flavonols from Polanisia dodecandra. J Nat Prod. 1995;58:475-482. https://doi.org/10.1021/np50118a001
- Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem. 2001;8:135-153. https://doi.org/10.2174/0929867013373723
- Hodek P, Trefil P, Stiborova M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact. 2002;139:1-21. https://doi.org/10.1016/S0009-2797(01)00285-X
- Manthey JA, Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J Agric Food Chem. 2002;50:5837-5843. https://doi.org/10.1021/jf020121d
- Chan HY, Wang H, Leung LK. The red clover (Trifolium pratense) isoflavone biochanin A modulates the biotransformation pathways of 7,12-dimethylbenz[a]anthracene. Br J Nutr. 2003; 90:87-92. https://doi.org/10.1079/BJN2003868
- Lee D, Bhat KP, Fong HH, Farnsworth NR, Pezzuto JM, Kinghorn AD. Aromatase inhibitors from Broussonetia papyrifera. J Nat Prod. 2001;64:1286-1293. https://doi.org/10.1021/np010288l
- Pouget C, Fagnere C, Basly JP, Besson AE, Champavier Y, Habrioux G, Chulia AJ. Synthesis and aromatase inhibitory activity of flavanones. Pharm Res. 2002;19:286-291. https://doi.org/10.1023/A:1014490817731
- Lai YY, Huang LJ, Lee KH, Xiao Z, Bastow KF, Yamori T, Kuo SC. Synthesis and biological relationships of 3',6-substituted 2-phenyl-4-quinolone-3-carboxylic acid derivatives as antimitotic agents. Bioorg Med Chem. 2005;13:265-275. https://doi.org/10.1016/j.bmc.2004.09.041
- Li L, Wang HK, Kuo SC, Wu TS, Lednicer D, Lin CM, Hamel E, Lee KH. Antitumor agents. 150. 2',3',4',5',5,6,7-substituted 2-phenyl-4-quinolones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 1994;37:1126-1135. https://doi.org/10.1021/jm00034a010
- Zhang SX, Bastow KF, Tachibana Y, Kuo SC, Hamel E, Mauger A, Narayanan VL, Lee KH. Antitumor agents. 196. Substituted 2-thienyl-1,8-naphthyridin-4-ones: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 1999;42: 4081-4087. https://doi.org/10.1021/jm990208z
- Chen K, Kuo SC, Hsieh MC, Mauger A, Lin CM, Hamel E, Lee KH. Antitumor agents. 174. 2',3',4',5,6,7-Substituted 2- phenyl-1,8-naphthyridin-4-ones: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 1997;40: 2266-2275. https://doi.org/10.1021/jm960858s
- Litvinov VP. Chemistry and biological activities of 1,8-naphthyridines. Russ Chem Rev. 2004;73:637-670. https://doi.org/10.1070/RC2004v073n07ABEH000856
- Kren V, Rezanka T. Sweet antibiotics - the role of glycosidic residues in antibiotic and antitumor activity and their randomization. FEMS Microbiol Rev. 2008;32:858-889. https://doi.org/10.1111/j.1574-6976.2008.00124.x
- Tsuzuki Y, Tomita K, Shibamori K, Sato Y, Kashimoto S, Chiba K. Synthesis and structure-activity relationships of novel 7- substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3- carboxylic acids as antitumor agents. Part 2. J Med Chem. 2004;47:2097-2109. https://doi.org/10.1021/jm0304966
- Tomita K, Tsuzuki Y, Shibamori K, Tashima M, Kajikawa F, Sato Y, Kashimoto S, Chiba K, Hino K. Synthesis and structure- activity relationships of novel 7-substituted 1,4-dihydro-4- oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents. Part 1. J Med Chem. 2002;45:5564-5575. https://doi.org/10.1021/jm010057b
- Srivastava SK, Jha A, Agarwal SK, Mukherjee R, Burman AC. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives. Anticancer Agents Med Chem. 2007;7:685-709. https://doi.org/10.2174/187152007784111313
- Tsuzuki Y, Tomita K, Sato Y, Kashimoto S, Chiba K. Synthesis and structure-activity relationships of 3-substituted 1,4- dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines as novel antitumor agents. Bioorg Med Chem Lett. 2004;14:3189-3193. https://doi.org/10.1016/j.bmcl.2004.04.011
- Abbas JA, Stuart RK. Vosaroxin: a novel antineoplastic quinolone. Expert Opin Investig Drugs. 2012;21:1223-1233. https://doi.org/10.1517/13543784.2012.699038
- Deady LW, Rogers ML, Zhuang L, Baguley BC, Denny WA. Synthesis and cytotoxic activity of carboxamide derivatives of benzo[b][1,6]naphthyridin-(5H)ones. Bioorg Med Chem. 2005; 13:1341-1355. https://doi.org/10.1016/j.bmc.2004.11.007
- Park JG, Kramer BS, Steinberg SM, Carmichael J, Collins JM, Minna JD, Gazdar AF. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. Cancer Res. 1987;47:5875-5879.
- Manthey JA, Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J Agric Food Chem. 2002;50:5837-5843. https://doi.org/10.1021/jf020121d
- Hwang YJ, Park SM, Yim CB, Im C. Cytotoxic activity and quantitative structure activity relationships of arylpropyl sulfonamides. Korean J Physiol Pharmacol. 2013;17:237-243. https://doi.org/10.4196/kjpp.2013.17.3.237
- Lim JC, Park SY, Nam Y, Nguyen TT, Sohn UD. The protective effect of eupatilin against hydrogen peroxide-induced injury involving 5-lipoxygenase in feline esophageal epithelial cells. Korean J Physiol Pharmacol. 2012;16:313-320. https://doi.org/10.4196/kjpp.2012.16.5.313
피인용 문헌
- Novel Tandem Aldol Intramolecular Cyclization of SubstitutedN-Benzylpiperidine-4-one: Synthesis of Novel-Type Nitrogen 2,8-Phenanthroline Heterocycles : Novel Tandem Aldol Intramolecular Cyclization o vol.52, pp.6, 2013, https://doi.org/10.1002/jhet.2263
- Novel 1,8-Naphthyridine Derivatives: Design, Synthesis and in vitro screening of their cytotoxic activity against MCF7 cell line vol.17, pp.1, 2019, https://doi.org/10.1515/chem-2019-0097
- Novel 1,8-Naphthyridine Derivatives: Design, Synthesis and in vitro screening of their cytotoxic activity against MCF7 cell line vol.17, pp.1, 2019, https://doi.org/10.1515/chem-2019-0097
- A Four-Component Domino Reaction: An Eco-Compatible and Highly Efficient Construction of 1,8-Naphthyridine Derivatives, Their In Silico Molecular Docking, Drug Likeness, ADME, and Toxicity Studies vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/5589837