References
- Lobo, R., Prabhu, K.S. and Shirwaikar, A. (2009) Curcuma zedoaria Rosc, (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J. Pharm. Pharmacol., 61, 13-21. https://doi.org/10.1211/jpp/61.01.0003
- Moon, C.K., Park, K.S., Lee, S.H. and Yoon, Y.P. (1985) Antitumor activities of several phytopolysaccharides. Arch. Pham. Res., 8, 42-44. https://doi.org/10.1007/BF02897565
- Kim, K.I., Kim, J.W., Hong, B.S., Shin, D.H., Cho, H.Y., Kim, H.K. and Yang, H.C. (2000) Antitumor, genotoxicity and anticlastogenic activities of polysaccharide from Curcuma zedoaria. Mol. Cells, 10, 392-398.
- Syu, W.J., Shen, C.C., Don, M.J., Ou, J.C., Lee, G.H. and Sun, C.M. (1998) Cytotoxicity of curcuminoids and some novel compounds from Curcuma doaria. J. Nat. Prod., 61, 1531-1534. https://doi.org/10.1021/np980269k
- Lay, E.Y., Chyau, C.C., Mau, J.L., Chen, C.C., Lai, Y.J., Shih, C.F. and Lin, L.L. (2004) Antimicrobial activity and cytotoxicity of the essential oil of Curcuma zedoaria. Am. J. Chin. Med., 32, 281-290. https://doi.org/10.1142/S0192415X0400193X
- Lu, J.J., Dang, Y.Y., Huang, M., Xu, W.S., Chen, X.P. and Wang, Y.T. (2012) Anti-cancer properties of terpenoids isolated from Rhizoma Curcumaea review. J. Ethnopharmacol., 143, 406-411. https://doi.org/10.1016/j.jep.2012.07.009
- Syed Abdul Rahman, S.N., Abdul Wahab, N. and Abd Malek, S.N. (2013) In vitro orphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evidence Based Complement Alternat. Med., 2013, 257108.
- Lakshmi, S., Padmaja, G. and Remani, P. (2011) Antitumour effects of isocurcu-menol isolated from Curcuma zedoaria rhizomes on human and murine cancer cells. Int. J. Med. Chem., 253, 962-967.
- Chen, W., Lu, Y., Gao, M., Wu, J., Wang, A. and Shi, R. (2011) Anti-angiogenesis effect of essential oil from Curcuma zedoaria in vitro and in vivo. J. Ethnopharmacol., 133, 220-226. https://doi.org/10.1016/j.jep.2010.09.031
- Ashkenazi, A. (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discovery, 7, 1001-1012. https://doi.org/10.1038/nrd2637
- Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol., 35, 495-516. https://doi.org/10.1080/01926230701320337
- Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
- Liu, X., Kim, C.N., Yang, J., Jemmerson, R. and Wang, X. (1996) Induction of apoptotic program in cell-free extract: requirement for dATP and cytochrome c. Cell, 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
- Kim, M.G., Kim, J.S., Hong, J.K., Ji, M.J. and Lee, Y.K. (2003) Cytotoxic activity of the extracts from Curcuma zedoaria. Toxicol. Res., 19, 293-296.
- Hong, C.H., Kim, Y.L. and Lee, S.K. (2001) Sesquiterpenoids from the rhizome of Curcuma zedoaria. Arch. Pharm. Res., 24, 424-426. https://doi.org/10.1007/BF02975188
- Simonsen, H.T., Andersen, A., Bremner, P., Heinrich, M., Wagner Smitt, U. and Jaroszewski, J.W. (2004) Antifungal constituents of Melicope borbonica. Phytother. Res., 18, 542-545. https://doi.org/10.1002/ptr.1482
- Ji, M.G., Choi, J., Lee, J. and Lee, Y. (2004) Induction of apoptosis by ar-turmerone on various cell lines. Int. J. Mol. Med., 14, 253-256.
- Mohammad, A.M., Yazdanparast, R. and Sanati, M.H. (2005) The cytotoxic and anti-proliferative effects of 30hydrogenkwadaphin in K562 and Jurkat cells is reduced by guanosine. J. Biochem. Mol. Biol., 38, 391-398. https://doi.org/10.5483/BMBRep.2005.38.4.391
- Bhalla, R.C., Toth, K.F., Bhatty, R.A., Thompson, L.P. and Sharma, R.V. (1997) Estrogen reduces proliferation and agonist-induced calcium increase in coronary artery smooth muscle cells. Am. J. Physiol., 272, H1996-2003.
- Finucanne, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T.G. and Green, D.R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-XL. J. Biol. Chem., 274, 2225-2233. https://doi.org/10.1074/jbc.274.4.2225
- Steller, H. (1995) Mechanisms and genes of cellular suicide. Science, 267, 1445-1449. https://doi.org/10.1126/science.7878463
- Kluck, R.M., Bossy-Wetzel, E., Green, D.R. and Newmeyer, D.D. (1997) The release of cytochrome c from mitochondria : a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136. https://doi.org/10.1126/science.275.5303.1132
- Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol., 60, 619-642. https://doi.org/10.1146/annurev.physiol.60.1.619
- Zamzami, N., Brenner, C., Marzo, I., Susin, S.A. and Kroemer, G. (1998) Subcellular and submitochondrial mode of action of Bcl-2 like oncoproteins. Oncogene, 16, 2265-2282. https://doi.org/10.1038/sj.onc.1201989
- Hsu, Y.T., Wolter, K.G. and Youle, R.J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. U. S. A., 94, 3668-3672. https://doi.org/10.1073/pnas.94.8.3668
- Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391, 496-499. https://doi.org/10.1038/35160
- Thornberry, N.A, Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunius, J., Elliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G.J.F., Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O.C., Raju, S.M., Rolando, A.M., Paul Salley, J., Yamin, T.T., Lee, T.D., Shively, J.E., Maccross, M., Mumford, R.A., Schmidt, J.A. and Tocci, M.J. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356, 768-774. https://doi.org/10.1038/356768a0
- Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M. and Horvitz, H.R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 75, 641-652. https://doi.org/10.1016/0092-8674(93)90485-9
- Decaudin, D., Marzo, I., Brenner, C. and Kroemer, G. (1998) Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy. Int. J. Oncol., 12, 141-152.
- Earnshaw, W.C., Martins, L.M. and Kaufmann, S.H. (1999) Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu. Rev. Biochem., 68, 383-424. https://doi.org/10.1146/annurev.biochem.68.1.383
Cited by
- Curcuma zedoaria (Berg.) Rosc. essential oil and paclitaxel synergistically enhance the apoptosis of SKOV3 cells vol.12, pp.1, 2015, https://doi.org/10.3892/mmr.2015.3473
- Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells vol.402, pp.1-2, 2015, https://doi.org/10.1007/s11010-014-2317-7
- Molecular characterization of antitumor effects of the rhizome extract from Curcuma zedoaria on human esophageal carcinoma cells vol.47, pp.6, 2015, https://doi.org/10.3892/ijo.2015.3199
- Volatile Constituents of Gaillonia aucheri from South of Iran vol.52, pp.4, 2016, https://doi.org/10.1007/s10600-016-1762-9
- Potassium Iodate Differently Regulates the Proliferation, Migration, and Invasion of Human Thyroid Cancer Cells via Modulating miR-146a vol.35, pp.2, 2017, https://doi.org/10.1080/07357907.2016.1261883
- vol.57, pp.7, 2017, https://doi.org/10.1080/10408398.2016.1176554