DOI QR코드

DOI QR Code

Cytotoxic Activity from Curcuma zedoaria Through Mitochondrial Activation on Ovarian Cancer Cells

  • Shin, Yujin (Department of Food and Nutrition, Dongseo University) ;
  • Lee, Yongkyu (Department of Food and Nutrition, Dongseo University)
  • Received : 2013.12.06
  • Accepted : 2013.12.27
  • Published : 2013.12.31

Abstract

${\alpha}$-Curcumene is one of the physiologically active components of Curcuma zedoaria, which is believed to perform anti-tumor activities, the mechanisms of which are poorly understood. In the present study, we investigated the mechanism of the apoptotic effect of ${\alpha}$-curcumene on the growth of human overian cancer, SiHa cells. Upon treatment with ${\alpha}$-curcumene, cell viability of SiHa cells was inhibited > 73% for 48 h incubation. ${\alpha}$-Curcumene treatment showed a characteristic nucleosomal DNA fragmentation pattern and the percentage of sub-diploid cells was increased in a concentration-dependent manner, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of ${\alpha}$-curcumene, which mediates cell death. These results suggest that the apoptotic effect of ${\alpha}$-curcumene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c.

Keywords

References

  1. Lobo, R., Prabhu, K.S. and Shirwaikar, A. (2009) Curcuma zedoaria Rosc, (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J. Pharm. Pharmacol., 61, 13-21. https://doi.org/10.1211/jpp/61.01.0003
  2. Moon, C.K., Park, K.S., Lee, S.H. and Yoon, Y.P. (1985) Antitumor activities of several phytopolysaccharides. Arch. Pham. Res., 8, 42-44. https://doi.org/10.1007/BF02897565
  3. Kim, K.I., Kim, J.W., Hong, B.S., Shin, D.H., Cho, H.Y., Kim, H.K. and Yang, H.C. (2000) Antitumor, genotoxicity and anticlastogenic activities of polysaccharide from Curcuma zedoaria. Mol. Cells, 10, 392-398.
  4. Syu, W.J., Shen, C.C., Don, M.J., Ou, J.C., Lee, G.H. and Sun, C.M. (1998) Cytotoxicity of curcuminoids and some novel compounds from Curcuma doaria. J. Nat. Prod., 61, 1531-1534. https://doi.org/10.1021/np980269k
  5. Lay, E.Y., Chyau, C.C., Mau, J.L., Chen, C.C., Lai, Y.J., Shih, C.F. and Lin, L.L. (2004) Antimicrobial activity and cytotoxicity of the essential oil of Curcuma zedoaria. Am. J. Chin. Med., 32, 281-290. https://doi.org/10.1142/S0192415X0400193X
  6. Lu, J.J., Dang, Y.Y., Huang, M., Xu, W.S., Chen, X.P. and Wang, Y.T. (2012) Anti-cancer properties of terpenoids isolated from Rhizoma Curcumaea review. J. Ethnopharmacol., 143, 406-411. https://doi.org/10.1016/j.jep.2012.07.009
  7. Syed Abdul Rahman, S.N., Abdul Wahab, N. and Abd Malek, S.N. (2013) In vitro orphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evidence Based Complement Alternat. Med., 2013, 257108.
  8. Lakshmi, S., Padmaja, G. and Remani, P. (2011) Antitumour effects of isocurcu-menol isolated from Curcuma zedoaria rhizomes on human and murine cancer cells. Int. J. Med. Chem., 253, 962-967.
  9. Chen, W., Lu, Y., Gao, M., Wu, J., Wang, A. and Shi, R. (2011) Anti-angiogenesis effect of essential oil from Curcuma zedoaria in vitro and in vivo. J. Ethnopharmacol., 133, 220-226. https://doi.org/10.1016/j.jep.2010.09.031
  10. Ashkenazi, A. (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discovery, 7, 1001-1012. https://doi.org/10.1038/nrd2637
  11. Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol., 35, 495-516. https://doi.org/10.1080/01926230701320337
  12. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  13. Liu, X., Kim, C.N., Yang, J., Jemmerson, R. and Wang, X. (1996) Induction of apoptotic program in cell-free extract: requirement for dATP and cytochrome c. Cell, 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  14. Kim, M.G., Kim, J.S., Hong, J.K., Ji, M.J. and Lee, Y.K. (2003) Cytotoxic activity of the extracts from Curcuma zedoaria. Toxicol. Res., 19, 293-296.
  15. Hong, C.H., Kim, Y.L. and Lee, S.K. (2001) Sesquiterpenoids from the rhizome of Curcuma zedoaria. Arch. Pharm. Res., 24, 424-426. https://doi.org/10.1007/BF02975188
  16. Simonsen, H.T., Andersen, A., Bremner, P., Heinrich, M., Wagner Smitt, U. and Jaroszewski, J.W. (2004) Antifungal constituents of Melicope borbonica. Phytother. Res., 18, 542-545. https://doi.org/10.1002/ptr.1482
  17. Ji, M.G., Choi, J., Lee, J. and Lee, Y. (2004) Induction of apoptosis by ar-turmerone on various cell lines. Int. J. Mol. Med., 14, 253-256.
  18. Mohammad, A.M., Yazdanparast, R. and Sanati, M.H. (2005) The cytotoxic and anti-proliferative effects of 30hydrogenkwadaphin in K562 and Jurkat cells is reduced by guanosine. J. Biochem. Mol. Biol., 38, 391-398. https://doi.org/10.5483/BMBRep.2005.38.4.391
  19. Bhalla, R.C., Toth, K.F., Bhatty, R.A., Thompson, L.P. and Sharma, R.V. (1997) Estrogen reduces proliferation and agonist-induced calcium increase in coronary artery smooth muscle cells. Am. J. Physiol., 272, H1996-2003.
  20. Finucanne, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T.G. and Green, D.R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-XL. J. Biol. Chem., 274, 2225-2233. https://doi.org/10.1074/jbc.274.4.2225
  21. Steller, H. (1995) Mechanisms and genes of cellular suicide. Science, 267, 1445-1449. https://doi.org/10.1126/science.7878463
  22. Kluck, R.M., Bossy-Wetzel, E., Green, D.R. and Newmeyer, D.D. (1997) The release of cytochrome c from mitochondria : a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136. https://doi.org/10.1126/science.275.5303.1132
  23. Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol., 60, 619-642. https://doi.org/10.1146/annurev.physiol.60.1.619
  24. Zamzami, N., Brenner, C., Marzo, I., Susin, S.A. and Kroemer, G. (1998) Subcellular and submitochondrial mode of action of Bcl-2 like oncoproteins. Oncogene, 16, 2265-2282. https://doi.org/10.1038/sj.onc.1201989
  25. Hsu, Y.T., Wolter, K.G. and Youle, R.J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. U. S. A., 94, 3668-3672. https://doi.org/10.1073/pnas.94.8.3668
  26. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391, 496-499. https://doi.org/10.1038/35160
  27. Thornberry, N.A, Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunius, J., Elliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G.J.F., Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O.C., Raju, S.M., Rolando, A.M., Paul Salley, J., Yamin, T.T., Lee, T.D., Shively, J.E., Maccross, M., Mumford, R.A., Schmidt, J.A. and Tocci, M.J. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356, 768-774. https://doi.org/10.1038/356768a0
  28. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M. and Horvitz, H.R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 75, 641-652. https://doi.org/10.1016/0092-8674(93)90485-9
  29. Decaudin, D., Marzo, I., Brenner, C. and Kroemer, G. (1998) Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy. Int. J. Oncol., 12, 141-152.
  30. Earnshaw, W.C., Martins, L.M. and Kaufmann, S.H. (1999) Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu. Rev. Biochem., 68, 383-424. https://doi.org/10.1146/annurev.biochem.68.1.383

Cited by

  1. Curcuma zedoaria (Berg.) Rosc. essential oil and paclitaxel synergistically enhance the apoptosis of SKOV3 cells vol.12, pp.1, 2015, https://doi.org/10.3892/mmr.2015.3473
  2. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells vol.402, pp.1-2, 2015, https://doi.org/10.1007/s11010-014-2317-7
  3. Molecular characterization of antitumor effects of the rhizome extract from Curcuma zedoaria on human esophageal carcinoma cells vol.47, pp.6, 2015, https://doi.org/10.3892/ijo.2015.3199
  4. Volatile Constituents of Gaillonia aucheri from South of Iran vol.52, pp.4, 2016, https://doi.org/10.1007/s10600-016-1762-9
  5. Potassium Iodate Differently Regulates the Proliferation, Migration, and Invasion of Human Thyroid Cancer Cells via Modulating miR-146a vol.35, pp.2, 2017, https://doi.org/10.1080/07357907.2016.1261883
  6. vol.57, pp.7, 2017, https://doi.org/10.1080/10408398.2016.1176554