DOI QR코드

DOI QR Code

Synthesis of nano-sized Ga2O3 powders by polymerized complex method

착체중합법을 이용한 Ga2O3 나노 분말의 합성

  • Jung, Jong-Yeol (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sang-Hun (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kang, Eun-Tae (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Teak (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo-Seok (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 정종열 (한국세라믹기술원 이천분원) ;
  • 김상훈 (한국세라믹기술원 이천분원) ;
  • 강은태 (국립경상대학교 공과대학 재료공학부 재료공학과) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 조우석 (한국세라믹기술원 이천분원)
  • Received : 2013.10.02
  • Accepted : 2013.11.15
  • Published : 2013.12.31

Abstract

In this study, we report the synthesis and characteristics of gallium oxide ($Ga_2O_3$) nanoparticles prepared by the polymerized complex method. $Ga_2O_3$ nanoparticles were synthesized using $Ga(NO_3)_3$, ethylene glycol, and citric acid as the starting materials at a low temperature of $500{\sim}800^{\circ}C$. The temperature of the weight reduction by the loss of organic precursor was revealed using TG-DTA analysis. The crystal structural change of $Ga_2O_3$ nanoparticles by the annealing process was investigated by XRD analysis. The morphologies and the size distributions of $Ga_2O_3$ nanoparticles were analyzed using SEM.

본 연구에서는 InGaZnO 산화물 반도체를 제조하기 위한 출발물질 중 하나인 $Ga_2O_3$ 분말을 착체중합법을 이용하여 합성하였다. 함께 사용되는 다른 출발 물질인 $In_2O_3$와 ZnO 분말 입자가 수십 nm 크기로 제조되는 반면 $Ga_2O_3$ 분말입자는 아직까지 수 ${\mu}m$ 크기의 입자가 사용되기 때문에 입도의 균일성을 확보하기 위해 착체중합법의 공정을 최적화하여 $Ga_2O_3$ 나노 분말을 합성하고 그 물성을 분석하였다. $Ga_2O_3$ 나노 분말 합성의 출발물질로 ethylene glycol, citric acid, $Ga(NO_3)_3$를 사용하였으며 $500{\sim}800^{\circ}C$에서 $Ga_2O_3$ 나노 입자을 합성하였다. TG-DTA 분석을 통해 전구체에서 유기물이 소실되는 온도를 확인하였고, XRD 분석을 통해 $Ga(NO_3)_3$ 농도 및 열처리 온도에 따른 $Ga_2O_3$ 나노 입자의 결정성을 확인하였다. SEM 분석을 이용하여 $Ga_2O_3$ 나노 입자의 미세 구조 및 입도 분포를 확인하였다.

Keywords

References

  1. H.J. Kim and B. S. Bea, "LCD TFT technology and recent trend", Phys. High Technol. 17 (2008) 10.
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature 432 (2004) 488. https://doi.org/10.1038/nature03090
  3. J.I. Jeong and J.H. Yang, "Optimization of coating conditions and room temperature deposition of ITO film using magnetron sputtering", RIST 22 (2008) 222.
  4. H.K. Park, "The research and development trend of cathode materials in lithium ion battery", J. Korean Electrochem. Soc. 11 (2008) 197. https://doi.org/10.5229/JKES.2008.11.3.197
  5. K.M. Ok, K.L. Kim, T.W. Kim, D.H. Kim, H.D. Park, Y.M. Sung, H.C. Park and S. Y. Yoon, "Preparation and characterization of $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$ electrolyte using glycine-nitrate process", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 37. https://doi.org/10.6111/JKCGCT.2013.23.1.037
  6. K.S. Hong, "Preparation of nanosize $\alpha$-alumina powder is monodisperse of various sizes using the forced hydrolysis", Ceramist 12 (2009) 30.
  7. S.W. Yun, Y.J. Shim and S.G. Cho, "Sintering behavior and electrical characteristics of ZnO varistors prepared by Pechini process", J. Korean Ceram. Soc. 35 (1998) 498.
  8. K.H. Choi, "Low temperature synthesis of the tin doped indium oxide nanopowders by citrate process and their sintering behavior", Ph. D. Thesis, Hanyang University (2003).
  9. Y.J. Kwon, K.H. Kim, C.S. Lim and K.B. Shim, "Low temperature synthesis of ZnO nanopowders by the polymerized complex method", J. Korean Cryst. Growth Cryst. Technol. 12 (2002) 229.
  10. J.H. Ryu, C.S. Lim and K.H. Auh, "Low temperature synthesis of ZnWO4 nanopowders using polymeric complex precursor", J. Korean Cryst. Growth Cryst. Technol. 12 (2002) 133.
  11. J.H. Sin, J.H. Kim, H.J. Hwang, U.S. Kim and W.S. Cho, "Synthesis and characterization of $LiMn_{1.5}Ni_{0.5}O_4$ powders using polymerization complex method", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 194. https://doi.org/10.6111/JKCGCT.2012.22.4.194
  12. S.R. Lim, T. Duong, N. Phan and E.W. Shin, "Effect of heat treatment temperatures on photocatalytic degradation of methylene blue by mesoporous titania", Appl. Chem. Eng. 22 (2011) 61.
  13. H.J. Ryu, J.K. Park and H.D. Park, "Synthesis of $Y_2O_3\;:\;Eu^{3+}$ phosphor for low-voltage by polymerized complex method", J. Korean Ceram. Soc. 35 (1998) 801.
  14. X. Liu, G. Qiu, Y. Zhao, N. Zhang and R. Yi, "Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods", J. Alloys Compd. 439 (2007) 275. https://doi.org/10.1016/j.jallcom.2006.08.062
  15. L. Li, W. Wei and M. Behrens, "Synthesis and characterization of ${\alpha}-,\;{\beta}-, $and $\gamma-Ga_2O_3$ prepared from aqueous solutions by controlled precipitation", Solid State Sci. 14 (2012) 971. https://doi.org/10.1016/j.solidstatesciences.2012.04.037
  16. C.S. Lim, "Preparation of ZnO@$TiO_2$ nano coreshell structure by the polymerized complex and sol-gel method", Anal. Sci. Technol. 21 (2008) 237.
  17. W.S. Cho, "Structural evolution and characterization of $BaTiO_3$ nanoparticles synthesized from polymeric precursor", J. Phys. Chem. Solids 59 (1998) 659. https://doi.org/10.1016/S0022-3697(97)00227-8