DOI QR코드

DOI QR Code

An Energy-Efficient Dynamic Area Compression Scheme in Wireless Multimedia Sensor Networks

무선 멀티미디어 센서 네트워크에서 에너지 효율적인 동적 영역 압축 기법

  • 박준호 (충북대학교 전기.전자.정보.컴퓨터학부 정보통신공학전공) ;
  • 류은경 (충북대학교 전기.전자.정보.컴퓨터학부 정보통신공학전공) ;
  • 손인국 (충북대학교 전기.전자.정보.컴퓨터학부 정보통신공학전공) ;
  • 유재수 (충북대학교 전기.전자.정보.컴퓨터학부 정보통신공학전공)
  • Received : 2013.08.26
  • Accepted : 2013.12.02
  • Published : 2013.12.28

Abstract

In recent years, the demands of multimedia data in wireless sensor networks have been significantly increased for the high-quality environment monitoring applications that utilize sensor nodes to collect multimedia data. However, since the amount of multimedia data is very large, the network lifetime and network performance are significantly reduced due to excessive energy consumption on particular nodes. In this paper, we propose an energy-efficient dynamic area compression scheme in wireless multimedia sensor networks. The proposed scheme minimizes the energy consumption in the huge multimedia data transmission process by compression using the Chinese Remainder Theorem(CRT) and dynamic area detection and division algorithm. Our experimental results show that our proposed scheme improves the data compression ratio by about 37% and reduces the amount of transmitted data by about 56% over the existing scheme on average. In addition, the proposed scheme increases network lifetime by about 14% over the existing scheme on average.

최근 무선 센서 네트워크는 멀티미디어 센서 모듈을 활용한 멀티미디어 데이터 수집을 기반으로 하는 고품질의 모니터링에 대한 요구가 증가하고 있다. 그러나 기존 센서 네트워크에서 수집되는 수치 데이터와 달리 멀티미디어 센서 네트워크에서 수집되는 데이터는 크기가 매우 크므로 데이터를 수집하는 과정에서 특정 노드의 과도한 에너지 소모 및 네트워크 성능 저하 문제가 발생한다. 본 논문에서는 무선 멀티미디어센서 네트워크에서 에너지 효율적인 동적 영역 압축 기법을 제안한다. 제안하는 기법은 중국인의 나머지 정리와 동적 변화 영역 감지 및 분할 알고리즘에 기반을 둔 수집 데이터의 데이터 압축 및 전송을 수행함으로써 대용량 멀티미디어 데이터 전송에서 발생하는 에너지 소모를 최소화한다. 성능평가 결과, 제안하는 기법은 기존 기법에 비해 데이터 압축률은 평균 37% 향상되었고, 데이터 전송량은 평균 56% 감소하였으며, 그에 따른 노드 생존율은 평균 14% 증가함을 보임으로써 그 우수성을 확인하였다.

Keywords

References

  1. D. Culler, D. Estrin, and M. Srivastava, "Guest Editors' Introduction: Overview of Sensor Networks," IEEE Computer, Vol.37, No.8, pp.41-49, 2004.
  2. Y. Lee, D. Kim, J. Park, D. Seong, and J. Yoo, "A Secure Multipath Transmission Scheme Based on One-Way Hash Functions in Wireless Sensor Networks," Journal of Korea Contents Association, Vol.12, No.1, pp.48-58, 2012. https://doi.org/10.5392/JKCA.2012.12.01.048
  3. H. Park, D. Hwang, J. Park, D. Seong, and J. Yoo, "Sensor Positioning Scheme using Density Probability Models in Non-uniform Wireless Sensor Networks," Journal of Korea Contents Association, Vol.12, No.3, pp.55-66, 2012. https://doi.org/10.5392/JKCA.2012.12.03.055
  4. J. A. Stankovic, "Wireless Sensor Networks," IEEE Computer, Vol.41, No.10, pp.92-95, 2008.
  5. I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, "A Survey on Wireless Multimedia Sensor Networks," Computer Networks, Vol.51, No.4, pp.921-960, 2007. https://doi.org/10.1016/j.comnet.2006.10.002
  6. S. Ehsan and B. Hamdaoui, "A Survey on Energy-Efficient Routing Techniques with QoS Assurances for Wireless Multimedia Sensor Networks," IEEE Communications Surveys and Tutorials, Vol.PP, No.99, pp.1-14, 2011.
  7. C. Yousef, W. Naoka, and M. Masayuki, "Network-Adaptive Image and Video Transmission in Camera-Based Wireless Sensor Networks," Proc. of the ACM/IEEE Conference on Distributed Smart Cameras, pp.336-343, 2007.
  8. L. W. Chew, L. M. Ang, and K. P. Seng, "Survey of Image Compression Algorithms in Wireless Sensor Networks," Proc. of the International Symposium on Information Technology(ITSim '08), pp.1-9, 2008.
  9. J. Park, D. Seong, B. Lee, and J. Yoo, "An Energy-Efficient Data Compression and Transmission Scheme in Wireless Multimedia Sensor Networks," LNEE(Lecture Notes in Electrical Engineering), Vol.203, pp.767-772, 2012.
  10. Y. S. Chen and Y. W. Lin, "C-MAC: An Energy-Efficient MAC Scheme Using Chinese-Remainder-Theorem for Wireless Sensor Networks," Proc. of IEEE International Conference on Communications, pp.3576-3581, 2007.
  11. 박준호, 류은경, 손인국, 유재수, "무선 멀티미디어 센서 네트워크에서 고효율 데이터 압축 기법", 한국콘텐츠학회 종합학술대회논문집, pp.9-10, 2013.
  12. D. Cruz, T. Ebrahimi, J. Askelof, M. Larsson, and C. Christopoulos, "Coding of Still Picture," Proc. of SPIE Applications of Digital Image Processing, Vol.4115, pp.1-10, 2000.
  13. J. M. Shapiro, "Embedded Image Coding using Zero-trees of Wavelet Coefficients," IEEE Transactions of Signal Processing, Vol.41, No.12, pp.3445-3462, 1993. https://doi.org/10.1109/78.258085
  14. P. J. Burt and E. H. Adelson, "The Laplacian Pyramid as a Compact Image Code," Proc. Of the Korean Institute of Information Scientists and Engineers, Vol.31, pp.532-540, 1983.
  15. G. F. McLean, "Vector Quantization for Texture Classification," IEEE Transactions on Systems, Vol.23, No.3, pp.637-649, 1993.
  16. C. Yousef, W. Naoka, and M. Masayuki, "Network-Adaptive Image and Video Transmission in Camera-Based Wireless Sensor Networks," Proc. of the ACM/IEEE Conference on Distributed Smart Cameras, pp.336-343, 2007.
  17. W. Heinzelman, "Application-Specific Protocol Architectures for Wireless Networks," PhD dissertation, Massachusetts Institute of Technology, 2000.
  18. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks," Proc. of the International Conference on System Sciences, pp.3005-3014, 2000.