DOI QR코드

DOI QR Code

LiDAR 자료를 이용한 산림 CO2 흡수량 산출 연구

Study of CO2 Absorption in Forest by Airborn LiDAR Data

  • 고신영 (전북대학교 토목공학과) ;
  • 박정기 (전북대학교 토목공학과) ;
  • 조기성 (전북대학교 토목공학과, 공업기술연구센터)
  • Go, Sin Young (Dept. of Civil Engineering, Chonbuk National University) ;
  • Park, Jung Gi (Dept. of Civil Engineering, Chonbuk National University) ;
  • Cho, Gi Sung (Dept. of Civil Engineering, Chonbuk National University)
  • 투고 : 2013.08.07
  • 심사 : 2013.12.09
  • 발행 : 2013.12.31

초록

산림지역에서 이산화탄소흡수량 산출을 위해서는 현지산림조사와 영상정보 등의 원격탐사 자료를 이용함으로써 흉고직경이나 수고와 같은 산림 탄소흡수량 추정에 필요한 기본자료를 정량적으로 수집하여 활용한다. 그러나 여전히 현장조사의 비중이 높고 혼효림이 많은 국내 산림 여건상 취득된 산림정보의 정확도가 낮은 실정이다. 따라서 본 연구에서는 LiDAR 자료를 이용하여 경사기반 영역확장법을 적용하여 수목의 수직적 구조를 파악하고 수목 정점추출 알고리즘을 통한 개체목의 수고 및 개체수를 파악하여 이를 현장조사를 통한 자료로부터 도출된 수고-흉고직경 관계식에 대입하여 정량적인 이산화탄소흡수량 산출에 필요한 기본데이터를 산출 할 수 있었다. 또한 총 3종류의 수목에 대한 이산화탄소흡수량을 계산하고 단위면적당 이산화탄소흡수량을 추정할 수 있었다.

Generally, Calculation of carbon dioxide absorption in the forest area is calculated using the information of the forest, such as tree height and DBH(Diameter of Breast Height). Tree height and DBH of these are obtained using the remote sensing data such as imagery and information of local forest survey. However, Mixed forest with a high proportion of field survey to lower the accuracy of forest information. In this study, vertical structure of the tree were identified by applying region growing method based on the slope using LiDAR data and height and number of the tree were identified by applying extracting top of the tree algorithm. Through the vertex tree extraction algorithm to identify height of tree and the number of individuals, substitute this for the DBH relation formula which is drawn from data through field surveys. In this, a quantitative calculation of carbon dioxide absorption were able to calculate the basic data. Also, carbon dioxide absorption of three type trees were calculated and average per unit area of carbon dioxide absorption were able to estimate.

키워드

참고문헌

  1. Chhabra, A., PALRIA, S. and Dadhwal, V. K, 2000, Growing stock-based forest biomass estimate for India, Biomass and Bioenergy, Vol. 22, pp. 187-194.
  2. Choi, Ko Mi, 2012, Analysis of forest health monitoring using national forest inventory data in korea, Journal of Korean Forest Society Conference, pp. 645-648.
  3. Choi, Yeon Woong, 2005, The building segmentation using entropy theory from LIDAR data, Chonbuk University.
  4. Felix, M., Erich, M., Benjamin, K., Klaus, I. I., Matthias, D., Britta, A., 2004, LiDAR-based grometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management, Vol. 92, pp. 353-362. https://doi.org/10.1016/j.rse.2004.05.013
  5. Haugerud, R. A. and Harding, D. J, 2001, Some algorithms for virtual deforestation of LiDAR topographic survey data, International archives of photogrammetry remote sensing and spatial information sciences, Vol. 34, pp.3-4.
  6. Jeong, Sung Eun, 2009, Estimating Crown Volume of Individual Trees using Aerial LiDAR and Terrestrial Laser Scanner, Korea University.
  7. Korea Forest Service, 2008, Forests and forestry technology.
  8. Kwak, Doo Ahn, Lee, Woo Kyun, Son, Min Ho, 2005, Application of LiDAR for measuring individual trees and forest stands, Journal of Korean Forest Society, Vol. 94, No. 6, pp. 431-440.
  9. Popescu, S. C. and Zhao, K., 2008, A voxel-based LiDAR method for estimating crown base height for deciduous and pine trees, Remote sensing of environment, Vol. 112, No. 3.
  10. Son, Young Mo, 2009, Development of pine carbon emission factor, Korea Forest Research Institute.

피인용 문헌

  1. 고밀도 LiDAR 자료를 이용한 산림자원 추출에 관한 연구 vol.33, pp.2, 2015, https://doi.org/10.7848/ksgpc.2015.33.2.73
  2. 항공라이다 자료를 활용한 수목의 개체수 및 수고 추출 vol.46, pp.1, 2013, https://doi.org/10.22640/lxsiri.2016.46.1.87