DOI QR코드

DOI QR Code

The Anti-Migratory Effect of Cirsium japonicum Pharmacopuncture in C6 Glioma Cell

대계 약침액의 C6 신경교종 세포에 대한 이주 억제 효과

  • Park, Juyeon (Department of Acupoint, College of Korean Medicine, Dongguk University) ;
  • Lee, Kangpa (Division of Bio Science, College of Science and Technology, Dongguk University) ;
  • Chang, Haeryong (Division of Bio Science, College of Science and Technology, Dongguk University) ;
  • Moon, Jinyoung (Department of Acupoint, College of Korean Medicine, Dongguk University)
  • 박주연 (동국대학교 한의과대학 경혈학교실) ;
  • 이강파 (동국대학교 과학기술대학 세포유전학 실험실) ;
  • 장해룡 (동국대학교 과학기술대학 세포유전학 실험실) ;
  • 문진영 (동국대학교 한의과대학 경혈학교실)
  • Received : 2013.10.24
  • Accepted : 2013.11.25
  • Published : 2013.12.27

Abstract

Objectives : Cirsium japonicum is a traditional Korean medicine that has been used in the treatment of inflammatory diseases such as appendicitis, hepatitis, pulmonary abscess and tumor. The aim of study was to elucidate anti-migratory activity of CJP(Cirsium japonicum pharmacopuncture) through regulation of inflammatory mediators in C6 glioma cell. Methods : Nitric oxide(NO) production was determined by using nitrite assay. The cell migration was analyzed by wound-healing assay and Boyden chamber assay. The expression levels of iNOS, and protein kinase C(PKC)-${\alpha}$ were measured by western blotting assay. Results : CJP showed a significant decrease on NO production. Moreover, glioma cell migration was effectively suppressed by CJP. Furthermore, CJP inhibited the expressions of iNOS and PKC-${\alpha}$ in C6 glioma cells. Conclusions : These results suggest that CJP inhibits glioma cell migration and iNOS expression through regulation of PKC-${\alpha}$. Therefore, it is expected that CJP could be an effective agents for blocking malignant progression of glioma.

Keywords

References

  1. An YL, Nie F, Wang ZY, Zhang DS. Preparation and characterization of realgar nanoparticles and their inhibitory effect on rat glioma cells. International Journal of Nanomedicine. 2011 ; 6 : 3187-94.
  2. Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci. 2011 ; 12(9) : 495-508. https://doi.org/10.1038/nrn3060
  3. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007 ; 21(21) : 2683-710. https://doi.org/10.1101/gad.1596707
  4. Guo G, Yao W, Zhang Q, Bo Y. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating mapk/erk signaling pathway. PLoS ONE. 2013 ; 8(8) : e72079. https://doi.org/10.1371/journal.pone.0072079
  5. Auffinger B, Thaci B, Ahmed A, Ulasov I, Lesniak MS. MicroRNA targeting as a therapeutic strategy against glioma. Curr Mol Med. 2013 ; 13(4) : 535-42. https://doi.org/10.2174/1566524011313040006
  6. Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA, Kaminska B. Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene. 2013 ; 32(12) : 1518-29. https://doi.org/10.1038/onc.2012.174
  7. Lowe DB, Storkus WJ. Chronic inflammation and immunologic- based constraints in malignant disease. Immunotherapy. 2011 ; 3(10) : 1265-74. https://doi.org/10.2217/imt.11.113
  8. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010 ; 31(1) : 37-49. https://doi.org/10.1093/carcin/bgp272
  9. Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radical Biology & Medicine. 2012 ; 52(9) : 2013-37. https://doi.org/10.1016/j.freeradbiomed.2012.02.035
  10. Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. 2010 ; 140(6) : 883-99. https://doi.org/10.1016/j.cell.2010.01.025
  11. Hur J. Dong-eui-bo-gam. Seoul : Bupin Publishing Co., Ltd. 2007 : 1980.
  12. Ahn DK. Illustrated Book of Korean Medicinal Herbs. 331. Seoul : Kyo-Hak Publishing Co., Ltd. 2006 : 518.
  13. Lee JJ, Moon JY. Antioxidant property of Aqua-Acupuncture solution from Circium japonicum. Korean Journal of Acupuncture. 2005 ; 22(4) : 57-65.
  14. Lee JJ, Kim H, Yi HS, Park WH, Moon JY. Suppression of Lipid Peroxidation and CYP Isozymes activities by Circium japonicum Herbal-acupuncture solution; Basic study for screening of medicinal herb on reactive oxygen radical and CYP-mediated atherosclerosis. Korean Journal of Acupuncture. 2006 ; 23(4) : 177-86.
  15. Dela Peña IJ, Lee HL, Yoon SY, Dela Peña JB, Kim HK, Hong EY, et al. The ethanol extract of Cirsium japonicum increased chloride ion influx through stimulating GABA(A) receptor in human neuroblastoma cells and exhibited anxiolytic-like effects in mice. Drug Discoveries & Therapeutics. 2013 ; 7(1) : 18-23.
  16. Jung HA, Jin SE, Min BS, Kim BW, Choi JS. Anti-inflammatoryactivity of Korean thistle Cirsium maackii and its major flavonoid, luteolin 5-O-glucoside. Food Chem Toxicol. 2012 ; 50(6) : 2171-9. https://doi.org/10.1016/j.fct.2012.04.011
  17. Liu S, Luo X, Li D, Zhang J, Qiu D, Liu W, et al. Tumor inhibition and improved immunity in mice treated with flavone from Cirsium japonicum DC. International Immunopharmacology. 2006 ; 6(9) : 1387-93. https://doi.org/10.1016/j.intimp.2006.02.002
  18. Liu S, Zhang J, Li D, Liu W, Luo X, Zhang R, et al. Anticancer activity and quantitative analysis of flavone of Cirsium japonicum DC. Nat Prod Res. 2007 ; 21(10) : 915-22. https://doi.org/10.1080/14786410701494686
  19. Kim DY, Kang SH, Ghil SH. Cirsium japonicum extract induces apoptosis and anti-proliferation in the human breast cancer cell line MCF-7. Mol Med Rep. 2010 ; 3(3) : 427-32.
  20. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007 ; 10(11) : 1387-94. https://doi.org/10.1038/nn1997
  21. Zong H, Verhaak RG, Canoll P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn. 2012 ; 12(4) : 383-94. https://doi.org/10.1586/erm.12.30
  22. Kim Y. Regulation of cell proliferation and migration in glioblastoma: new therapeutic approach. Front Oncol. 2013 ; 3 : 53.
  23. Gao Z, Cheng P, Xue Y, Liu Y. Vascular endothelial growth factor participates in modulating the C6 glioma-induced migration of rat bone marrow-derived mesenchymal stem cells and upregulates their vascular cell adhesion molecule-1 expression. Experimental and Therapeutic Medicine. 2012 ; 4(6) : 993-8.
  24. Muntane J, la Mata MD. Nitric oxide and cancer. World J Hepatol. 2010 ; 2(9) : 337-44. https://doi.org/10.4254/wjh.v2.i9.337
  25. Rakoff-Nahoum S. Why Cancer and Inflammation. Yale J Biol Med. 2006 ; 79(3-4) : 123-30.
  26. Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM, et al. Cancer and Inflammation: Promise for Biological Therapy. J Immunother. 2010 ; 33(4) : 335-51. https://doi.org/10.1097/CJI.0b013e3181d32e74
  27. Hussain SP, Harris CC. Inflammation and cancer: An ancient link with novel potentials. Int J Cancer. 2007 ; 121 : 2373-80. https://doi.org/10.1002/ijc.23173
  28. Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Letters. 2013.
  29. Jiang Q, Zhou Z, Wang L, Wang L, Yue F, Wang J, et al. A Scallop Nitric Oxide Synthase (NOS) with Structure Similar to Neuronal NOS and Its Involvement in the Immune Defense. PLoS One. 2013 ; 8(7) : e69158. https://doi.org/10.1371/journal.pone.0069158
  30. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010 ; 23(2) : 75-93. https://doi.org/10.1016/j.niox.2010.04.007
  31. Lieb K, Engels S, Fiebich BL. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochemistry International. 2003 ; 42(2) : 131-7. https://doi.org/10.1016/S0197-0186(02)00076-1
  32. Xu X, Malave A. P38 MAPK, but not p42/p44 MAPK mediated inducible nitric oxide synthase expression in C6 glioma cells. Life Sci. 2000 ; 67(26) : 3221-30. https://doi.org/10.1016/S0024-3205(00)00902-4
  33. Ganster RW, Taylor BS, Shao L, Geller DA. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA. 2001 ; 98(15) : 8638-43. https://doi.org/10.1073/pnas.151239498
  34. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007 ; 8(1) : 57-69. https://doi.org/10.1038/nrn2038
  35. Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol. 2003 ; 27(3) : 325-55. https://doi.org/10.1385/MN:27:3:325
  36. Clerk A, Sugden PH. Untangling the Web: specific signaling from PKC isoforms to MAPK cascades. Circ Res. 2001 ; 89(10) : 847-9.
  37. Lee SJ, Lim KT. Inhibitory effect of 30-kDa phytoglycoprotein on expression of TNF-alpha and COX-2 via activation of PKC-alpha and ERK 1/2 in LPS-stimulated RAW 264.7 cells. Mol Cell Biochem. 2008 ; 317(1-2) : 151-9. https://doi.org/10.1007/s11010-008-9843-0
  38. Chen CC, Wang JK, Lin SB. Antisense Oligonucleotides Targeting Protein Kinase C-$\alpha$, -$\beta$I, or -$\delta$ But Not -$\eta$ Inhibit Lipopolysaccharide-Induced Nitric Oxide Synthase Expression in RAW 264.7 Macrophages: Involvement of a Nuclear Factor kB-Dependent Mechanism. The Journal of Immunology. 1998 ; 161 : 6206-14.
  39. Lin TH, Kuo HC, Chou FP, Lu FJ. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer. 2008 ; 8 : 58. https://doi.org/10.1186/1471-2407-8-58
  40. Hu JG, Wang XF, Zhou JS, Wang FC, Li XW, Lu HZ. Activation of PKC-alpha is required for migration of C6 glioma cells. Acta Neurobiol Exp (Wars). 2010 ; 70 : 239-45.
  41. Lee KG, Cho HJ, Bae YS, Park KK, Choe JY, Chung IK, et al. Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-alpha expression. J Ethnopharmacol. 2009 ; 123(1) : 15-21. https://doi.org/10.1016/j.jep.2009.02.044