DOI QR코드

DOI QR Code

Impedance Matching of Electrically Small Antenna with Ni-Zn Ferrite Film

  • Lee, Jaejin (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama) ;
  • Hong, Yang-Ki (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama) ;
  • Lee, Woncheol (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama) ;
  • Park, Jihoon (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama)
  • Received : 2013.10.25
  • Accepted : 2013.11.11
  • Published : 2013.12.31

Abstract

We demonstrate that a partial loading of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (Ni-Zn ferrite) film remarkably improves impedance matching of electrically small $Ba_3Co_2Fe_{24}O_{41}$ ($Co_2Z$) hexaferrite antenna. A 3 ${\mu}m$ thick Ni-Zn ferrite film was deposited on a silicon wafer by the electrophoresis deposition process and post-annealed at $400^{\circ}C$. The fabricated Ni-Zn ferrite film has saturation magnetization of $268emu/cm^3$ and coercivity of 89 Oe. A partial loading of the Ni-Zn ferrite film on the $Co_2Z$ hexaferrite helical antenna increases antenna return loss to 24.7 dB from 9.0 dB of the $Co_2Z$ antenna. Experimental results show that impedance matching and maximum input power transmission to the antenna without additional matching elements can be realized, while keeping almost the same size as the $Co_2Z$ antenna size.

Keywords

References

  1. J. Lee, Y. K. Hong, S. Bae, G. S. Abo, W. M. Seong, and G. H. Kim, IEEE Antennas Wirel. Propag. Lett. 10, 603 (2011). https://doi.org/10.1109/LAWP.2011.2159468
  2. H. Moon, G. Y. Lee, C. C. Chen, and J. L. Volakis, IEEE Antennas Wirel. Propag. Lett. 11, 322 (2012). https://doi.org/10.1109/LAWP.2012.2191131
  3. W. Lee, Y. K. Hong, J. Lee, D. Gillespie, K. G. Ricks, F. Hu, and J. Abu-Qahouq, IEEE Antennas Wirel. Propag. Lett. 12, 765 (2013). https://doi.org/10.1109/LAWP.2013.2270948
  4. Z. Zheng, H. Zhang, J. Q. Xia, and F. Bai, IEEE Trans. Magn. 49, 4214 (2013). https://doi.org/10.1109/TMAG.2013.2243829
  5. V. G. Harris, IEEE Trans. Magn. 48, 1075 (2012). https://doi.org/10.1109/TMAG.2011.2180732
  6. L. J. Chu, J. Appl. Phys. 19, 1163 (1948). https://doi.org/10.1063/1.1715038
  7. S. Bae, Y. K. Hong, and A. Lyle, J. Appl. Phys. 103, 07E929 (2008). https://doi.org/10.1063/1.2838619
  8. G. M. Yang, X. Xing, A. Daigle, O. Obi, M. Liu, J. Lou, S. Stoute, K. Naishadham, and N. X. Sun, IEEE Trans. Antennas Propag. 58, 648 (2010). https://doi.org/10.1109/TAP.2009.2039295
  9. S. Hashi, N. Takada, K. Nishimura, O. Sakurada, S. Yanase, Y. Okazaki, and M. Inoue, IEEE Trans. Magn. 41, 3487 (2005). https://doi.org/10.1109/TMAG.2005.854912
  10. S. Hashi, Y. Tokunaga, S. Yanase, Y. Okazaki, O. Sakurada, K. Nishimura, and M. Inoue, IEEE Trans. Magn. 40, 2796 (2004). https://doi.org/10.1109/TMAG.2004.832508
  11. S. Bae, Y. K. Hong, J. J. Lee, W. M. Seong, J. S. Kum, W. K. Ahn, S. H. Park, G. S. Abo, J. Jalli, and J. H. Park, IEEE Trans. Magn. 46, 2361 (2010). https://doi.org/10.1109/TMAG.2010.2044376
  12. G. Breed, High Freq. Electronics 6, 50 (2007).
  13. J. Prado, M. E. Gomez, P. Prieto, and A. Mendoza, J. Magn. Magn. Mater. 321, 2792 (2009). https://doi.org/10.1016/j.jmmm.2009.04.015
  14. O. F. Caltun, J. Optoelectron. Adv. Mater. 7, 739 (2005).
  15. P. Gao, E. V. Rebrov, T. M. W. G. M. Verhoeven, J. C. Schouten, R. Lkeismit, G. Kozlowski, J. Cetnar, Z. Turgut, and G. Subramanyam, J. Appl. Phys. 107, 044317 (2010). https://doi.org/10.1063/1.3309767
  16. D. C. Kulkarni, U. B. Lonkar, and Vijaya Puri, J. Magn. Magn. Mater. 320, 1844 (2008). https://doi.org/10.1016/j.jmmm.2008.02.110