DOI QR코드

DOI QR Code

Acceleration of Intrusion Detection for Multi-core Video Surveillance Systems

멀티 코어 프로세서 기반의 영상 감시 시스템을 위한 침입 탐지 처리의 가속화

  • Lee, Gil-Beom (School of Electronics, Telecommunication & Computer Engineering, Korea Aerospace University) ;
  • Jung, Sang-Jin (School of Electronics, Telecommunication & Computer Engineering, Korea Aerospace University) ;
  • Kim, Tae-Hwan (School of Electronics, Telecommunication & Computer Engineering, Korea Aerospace University) ;
  • Lee, Myeong-Jin (School of Electronics, Telecommunication & Computer Engineering, Korea Aerospace University)
  • 이길범 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 정상진 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 김태환 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 이명진 (한국항공대학교 항공전자 및 정보통신공학부)
  • Received : 2013.07.29
  • Accepted : 2013.11.27
  • Published : 2013.12.25

Abstract

This paper presents a high-speed intrusion detection process for multi-core video surveillance systems. The high-speed intrusion detection was designed to a parallel process. Based on the analysis of the conventional process, a parallel intrusion detection process was proposed so as to be accelerated by utilizing multiple processing cores in contemporary computing systems. The proposed process performs the intrusion detection in a per-frame parallel manner, considering the data dependency between frames. The proposed process was validated by implementing a multi-threaded intrusion detection program. For the system having eight processing cores, the detection speed of the proposed program is higher than that of the conventional one by up to 353.76% in terms of the frame rate.

본 논문은 멀티 코어 프로세서 기반의 영상 감시 시스템을 위한 침입 탐지 처리의 가속화를 제안한다. 침입 탐지 처리의 가속화를 위해 병렬화를 진행하였고, 이를 위해 기존 침입 탐지 알고리즘을 분석하고 데이터 의존성을 고려하여 프레임 단위의 병렬화된 처리 구조를 설계하였다. 병렬화된 침입 탐지 처리의 유효성을 검증하기 위하여 다중 쓰레드 기반의 프로그램으로 구현하여 침입 탐지의 가속화 정도를 측정하였다. 구현한 침입 탐지 처리 프로그램의 탐지 속도는 논리적 쓰레드를 8개까지 구현할 수 있는 환경에서 기존 단일 쓰레드 처리 대비 최대 353.76%가 향상되었다.

Keywords

References

  1. Tae-kyung Kim, Joon-ki Paik, "Video analysis and tracking for intelligent surveillance systems," Journal of the Institute of Electronics Engineers of Korea on Signal Processing, 39(2), pp. 55-65, Feb 2012.
  2. Joo-heon Park, Youn-chul Shin, Jae-won Jeong, Myeong-jin Lee, "Detection and tracking of intruding objects based on spatial and temporal relationship of objects," in Proc. IWIT Intl. Conf. ISA, 2013.
  3. C. Stauffer, W.E.L Grimson, "Adaptive background mixture models for real-time tracking," in Proc. IEEE Intl. Conf. CVPR, vol. 2, pp. 246-252, 1999.
  4. Ying-Li Tian, et al., "Robust and efficient foreground analysis for real time video surveillance," in Proc. IEEE Intl. Conf. CVPR, vol. 1, pp. 1182-1187, 2005.
  5. Jeong Hwan Choi, Young Min Baek, Jin Hee Na, Jin Young Choi, "Effective moving object detection algorithm for surveillance systems," in Proc. KIEE Conf. ICS, pp. 457-458, Oct 2007.
  6. Anil Kumar, Yaakov Bar-Shalom and Eliezer Oron, "Precision tracking based on segmentation with optimal layering for image sensors," IEEE Trans. Pattern Anal. Mach. Intell., vol. 17. pp. 182-188, Feb 1995. https://doi.org/10.1109/34.368171
  7. Perona, P., Malik, J., "Scale-space and edge detection using an isotropic diffusion," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, pp. 629-639, Jul 1990. https://doi.org/10.1109/34.56205
  8. Seok-Hwan Jang, In-haeng Kim, Hyoung-geun Song, Sang-ho Song, Tong-rae Cho, Ki-back Kim, Woong-soo Kim, Whoi-yul Kim, "Real-time multi-target tracking system," in Proc. IEEK Winter Conference 11(1), pp.499-502, Jan 1998.
  9. J. Sochman, J. Matas, "WaldBoost-Learning for time constrained sequential detection," in Proc. IEEE Intl. Conf. CVPR, vol. 2, pp. 150-156, Jun 2005.
  10. Herout, Adam, et al. "Real-time object detection on CUDA," Journal of Real-Time Image Processing, vol 6(3), pp. 159-170, Sep 2011. https://doi.org/10.1007/s11554-010-0179-0
  11. N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Intl. Conf. CVPR, vol. 1, pp. 886-893, Jun 2005.
  12. Q. Zhao, S. Brennan, and H. Tao, "Differential EMD tracking," in Proc. IEEE Intl. Conf. ICCV, pp. 1-8, Oct 2007.
  13. Xie, Di, Lu Dang, and Ruofeng Tong, "Video based head detection and tracking surveillance system," in Proc. IEEE Intl. Conf. FSKD, pp. 2832-2836, May 2012.
  14. G. L. Foresti, "Object recognition and tracking for remote video surveillance," IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 1045-1062, 1999. https://doi.org/10.1109/76.795058
  15. G. L. Foresti, "A real-time system for video surveillance of unattended outdoor environments," IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 697-704, 1998. https://doi.org/10.1109/76.728411
  16. W. Hu, T. Tan, L. Wang, and S. Maybank, "A survey on visual surveillance of object motion and behaviors," IEEE Trans. Syst. Man, Cynern., Pt. C, vol. 34(3), pp. 334-352, Aug 2004.
  17. L. Maddalena, A. Petrosino, "A self-organization approach to background subtraction for visual surveillance applications," IEEE Trans. Image Process., vol. 17, pp. 1168-1177, Jul 2008. https://doi.org/10.1109/TIP.2008.924285
  18. D.-M. Tasi, S.-C. Lai, "Independent component analysis-based background subtraction for indoor surveillance," IEEE Trans. Image Process., vol. 18 pp. 158-167, Jan 2009. https://doi.org/10.1109/TIP.2008.2007558
  19. A. J. Lipton, H. Fujiyoshi, and R.S. Patil, "Moving target classification and tracking from real-time video," in Proc. IEEE Workshop on WACV, pp. 8-14, Oct 1998.
  20. J. Barron, D. Fleet, and S. Beauchemin, "Performance of optical flow techniques," International Journal of Computer Vision, vol. 12, pp. 42-77, 1994. https://doi.org/10.1016/0262-8856(94)90054-X
  21. Walczyk Robert, Armitage Alistair and Binnie David, "Comparative study on connected component labeling algorithms for embedded video processing systems," in Proc. Intl. Conf. IPCV, 2010.
  22. PETS, http://pets2013.net
  23. H. Grabner, P. M. Roth and H. Bischof, "Is pedestrian detection really a hard task?" in Proc. IEEE Intl. Workshop on PETS, pp 1-8, Oct 2007.