DOI QR코드

DOI QR Code

Polyphenism by the level of predation risk in larval salamander, Hynobius leechii

포식압 수준에 따른 한국산 도롱뇽 유생의 표현형의 변화

  • Hwnag, Jihee (Department of Convergence Science, Sahmyook University) ;
  • Kim, Eun-Ji (Department of Convergence Science, Sahmyook University) ;
  • Kim, Ho-Jin (Department of Convergence Science, Sahmyook University) ;
  • Chung, Hoon (Department of Annimal resource, Sahmyook University)
  • 황지희 (삼육대학교 대학원 융합과학과 행동과학연구실) ;
  • 김은지 (삼육대학교 대학원 융합과학과 행동과학연구실) ;
  • 김호진 (삼육대학교 대학원 융합과학과 행동과학연구실) ;
  • 정훈 (삼육대학교 동물자원학과)
  • Received : 2013.04.18
  • Accepted : 2013.08.09
  • Published : 2013.11.30

Abstract

This study examined the cannibalistic polyphenism of larval salamander Hynobius leechii by the level of predation risk. Salamander eggs were collected from three regions (Mountain Inwang, Mountain Surak and Gwangju). Eggs were treated by three different risk conditions: (1) high risk, predation risk three times a day; (2) medium risk, predation risk once a day; and (3) low risk, no predation risk. Predation risk was conducted using a chemical cue from Chinese minnows. The chemical cue treatment started from the day of collection and ended one week after hatching. Post-treatment measurements were head width at the level of the eyes (HWE), largest head width (LHW), and Snout-vent length of the each larva. To compare the morphological change according to the predation risk, we modified the two head size, HWE and LHW, to HWE/LHW. A significant difference in HWE/LHW and snout-vent length was evident according to the level of predation risk. And larval mortality was increase by the predation risk. The results indicate that predation risk can cause cannibalistic polyphenism of larval salamander and this morphological change could influence larval mortality.

본 연구는 한국산 도롱뇽 유생(Hynobius leechii)을 대상으로 포식압의 수준이 카니발리즘적 폴리페니즘에 영향을 미치는지 알아보기 위하여 수행되었다. 버들치의 냄새를 포식자 신호로 이용하여 (1) 높은 포식압- 하루 세 번의 포식압 (2) 중간 포식압- 하루 한 번의 포식압 (3) 포식압 없음 세 그룹으로 나누어 채집일로부터 부화 후 일주일까지 처리하였다. 먹이섭취로 인한 형태적 변화를 막기 위하여 실험은 기아상태에서 진행되었으며, 도롱뇽 유생은 경기도 광주, 인왕산, 수락산에서 채집된 난괴를 이용하였다. 포식압 처리 이후 도롱뇽 유생의 머리 중 가장 넓은 곳의 길이(LHW), 눈이 있는 부분의 머리길이(HWE). 그리고 코 끝부터 항문(SVL)까지의 길이를 측정하였다. 카니발리즘적 폴리페니즘의 측정은 HWE를 LHW로 나눈 수치(HWE/LHW)를 이용하여 통계처리를 하였고, 그 결과 포식압 수준이 증가함에 따라 HWE/LHW와 SVL이 유의미하게 증가하는 것을 볼 수 있었다. 또한 각 포압에 따른 사망률을 조사하여 본 결과 포식압 수준에 따른 증가를 보여, 카니발리즘적 폴리페니즘은 매우 에너지 소모적인 것으로 볼 수 있었다. 이러한 결과를 통하여 도롱뇽유생은 한정적 자원을 가진 환경에서 포식압에 의하여 카니발리즘을 일으키기 유리한 형태로 변화할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. Altwegg, R and Reyer, HU (2003). Patterns of natural selections and evolution of species, Science, 294, pp. 321-326.
  2. Berven, KA (1990). Factors affection population fluctuations in larval and adult stages of the wood frog (Rana sylvatica), Ethology, 7, pp. 1599-1608.
  3. Brown, GE, Rive, AC and Ferrari, MCO (2006). The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk, Behav. Ecol. Sociobiol., 61, pp. 9-16. https://doi.org/10.1007/s00265-006-0232-y
  4. Clark, CW (1994). Antipredator behaviour and the asset protection principle, Behav. Ecol., 5, pp. 159-170. https://doi.org/10.1093/beheco/5.2.159
  5. Crump, ML (1992). Cannibalism in amphibians, Cannibalism: Ecology and Evolution among Diverse Taxa, MA Elgar and BJ Crespi (eds.). Oxford University Press, Oxford, pp. 256-276.
  6. Ferrari, MCO and Chivers, DP (2008). Cultural learning of predators in mixed species assemblages: the effects of tutor-to-obsever ratio, Anim Behav., 75, pp. 1921-1925. https://doi.org/10.1016/j.anbehav.2007.10.037
  7. Ferrari, MCO and Chivers, DP (2009). Temporal variability, threat-sensitivity and conflicting information about the nature of risk: understanding the dynamics of tadpole antipredator behaviour, Anim. Behav., 78, pp. 11-16. https://doi.org/10.1016/j.anbehav.2009.03.016
  8. Houston, AI, McNamara, J and Huthcinson, JMC (1993). General results concerning the trade-off between gaining energy and avoiding predation, Philos. Trans. R. Soc. Lond. B., 341, pp. 375-397. https://doi.org/10.1098/rstb.1993.0123
  9. Hwang, JH and Chung H (2010). The polyphenism by the level of predation risk and habitat in larval salamander, Hynobius leechii, Kor. J. Env Eco., 24, pp. 744-750.
  10. Jackson, ME and Semlitsch, RD (1993). Paedomorphosis in the salamander Ambystoma talpoideum: effectsof a fish predator, Ecology, 74, pp. 342-250. https://doi.org/10.2307/1939297
  11. Kats, KB and Dill, KM (1998). The scent of death: chemosensory assessment of predation risk by prey animals, Ecoscience, 5, pp. 361-394. https://doi.org/10.1080/11956860.1998.11682468
  12. Laurila, A, Jarvi- Laturi, M, Pakkasmaa, S and Merila, J (2004). Temporal variation in predation risk: stagedependency, graded responses and fitness costs in tadpole antipredator dfences. Oikos, 107, pp. 90-99. https://doi.org/10.1111/j.0030-1299.2004.13126.x
  13. Lima, SL and Dill, LM (1990). Behavioral decisions made under the risk of predation: a review and prospectus, Canadian J. of Zoology, 68, pp. 619-640. https://doi.org/10.1139/z90-092
  14. Lima, SL and Bednekoff, PA (1999). Temporal variation in danger dfrives antipredator behavior: the predation risk allocation hypothesis. Am. Nat., 153, pp. 649-659. https://doi.org/10.1086/303202
  15. Merilia, J and Crnokrak, P (2001). Comparison of marker gene and quantitative genetic differentiation among popultations, J. Evol. Biol., 14, pp. 892-903. https://doi.org/10.1046/j.1420-9101.2001.00348.x
  16. Michimae, M and Wakahara, M (2001). Factors which affect the occurrence of cannibalism and the broad headed "cannibal" morph in larvae of the salamander Hynobius retardatus, Behav. Ecol. Sociobiol., 50, pp. 339-345. https://doi.org/10.1007/s002650100368
  17. Michimae, M and Wakahara, M (2002). A tadpole-induced polyphenism in the salamander Hynobius retardatus, Evolution., 56(10), pp. 2029-2038. https://doi.org/10.1111/j.0014-3820.2002.tb00129.x
  18. Nishihara, A (1996). Effects of density on growth of head size in larvae of the salamander Hynobius retardatus, Copeia, 1996(2), pp. 478-483. https://doi.org/10.2307/1446871
  19. Park, SR, Jeong, JY and Park, DS (2005). Cannibalism in the Korean salamander (hynobius leechii: Hynobiidae, caudata, amphibia) larvae, Integrative Biosciences, 9, pp. 13-18. https://doi.org/10.1080/17386357.2005.9647246
  20. Pfenning, DW (1992). Proximate and functional causes of polyphenism in an anuran tadpole, Funct. Ecol., 6, pp. 167-174. https://doi.org/10.2307/2389751
  21. Pfenning, DW (1997). Kinship and cannibalism, Bioscience, 47(10), pp. 667-675. https://doi.org/10.2307/1313207
  22. Polis, GA (1981). The evolution and dynamics of intraspecific predation, Anny. Rev. Ecol. Syst., 12, pp. 225-251. https://doi.org/10.1146/annurev.es.12.110181.001301
  23. Scott, DE (1994). The effect of larval density on adult demographic traits in Ambystoma opacum, Ecol., 75, pp. 1383-1396. https://doi.org/10.2307/1937462
  24. Sih, A and Mccarthy, TM (2002). Prey responses to pulses of risk and safety: testing the risk allocation hypothesis, Anim. Behav., 63, pp. 437-443. https://doi.org/10.1006/anbe.2001.1921
  25. Sih, A and Moore, RD (1993). Delayed hatching of salamander eggs in response to enhanced larval predation risk, Am. Nat., 142, pp. 947-960. https://doi.org/10.1086/285583
  26. Smith, DC (1987). Adult recruitment in chorus frogs: effects of size and date at metamorphosis, Ecology, 68, pp. 344-350. https://doi.org/10.2307/1939265
  27. Stemberger, SS and Gilbert, JJ (1987). Multiple-species induction of morphological defenses in the rotifer Keratella testudo, Ecology, 68, pp. 370-378. https://doi.org/10.2307/1939268
  28. Turner, AM, Bernot, RJ, and Boss, CM (2000). Chemical cues modify species interactions; the ecological consequences of predator avoidance by freshwater sails, Oikos, 88, pp. 148-158. https://doi.org/10.1034/j.1600-0706.2000.880117.x
  29. Tollrian, R and Harvell, CD (1999). The ecology and evolution of inducible defenses, Princeton Univ Press, Princeton, New Jersey, USA.
  30. Van Buskirk, J and Schmidt, BR (2000). Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature, Ecology, 81, pp. 3009-3028. https://doi.org/10.1890/0012-9658(2000)081[3009:PIPPIL]2.0.CO;2
  31. Van Buskirk, J, Muller, C, Portmann, A and Surbeck, M (2002). A test of the risk allocation hypothesis: tadpole responses to temporal change in predation risk, Behavioral Ecology, 13(4), pp. 526-530. https://doi.org/10.1093/beheco/13.4.526
  32. Van Buskirk, J and Arioloi, M (2002). Dosage response of an induced defense: How sensitive are tadpoles to predation risk?, Ecology, 83(6), pp.1580-1585. https://doi.org/10.1890/0012-9658(2002)083[1580:DROAID]2.0.CO;2
  33. Wakahara, M (1995). Cannibalism and the resulting dimorphism in larvae of a salamander Hynobius. retardatus, inhabited in Hokkaido, Japan Zool. Sci., 12, pp. 467-473. https://doi.org/10.2108/zsj.12.467
  34. Wakahara, M (1997). Kin recognition among intact and blinded, mixed-sibling larvae of a cannibalistic salamander Hynobius retardatus, Zool. Sci., 14, pp. 893-899. https://doi.org/10.2108/zsj.14.893
  35. Wellborn, GA, Skelly, DK and Werner EE (1996). Mechanisms creating community structure across a freshwater habitat gradient, Annu. Rev. Ecol. Syst., 27, pp. 337-363. https://doi.org/10.1146/annurev.ecolsys.27.1.337
  36. West-Eberhard, MJ (1992). Behavior and evolution, Molds, Molecules and Metazoans: Growing Points in Evolutionary Biology, Grant PR and H. S. Horn (eds.), Princeton University Press, Princeton, pp. 55-75.
  37. West-Eberhard, MJ (1989). Phenotypic plasticity and the origins of diversity, Ann. Rev., 20, pp. 249-278.
  38. Wiseden, BD (2000). Olfactory assessment of predation risk in the aquatic environment, Phil. Trans. R. Soc. Lond. B., 355, pp. 1205-1208. https://doi.org/10.1098/rstb.2000.0668