DOI QR코드

DOI QR Code

Robotically Assisted Microsurgery: Development of Basic Skills Course

  • Liverneaux, Philippe Andre (Department of Hand Surgery, Strasbourg University Hospital) ;
  • Hendriks, Sarah (Department of Hand Surgery, Strasbourg University Hospital) ;
  • Selber, Jesse C. (Plastic Surgery, Anderson Cancer Center, The University of Texas) ;
  • Parekattil, Sijo J. (Robotic Surgery and Urology, Winter Haven Hospital and University of Florida)
  • Received : 2013.02.02
  • Accepted : 2013.02.18
  • Published : 2013.07.15

Abstract

Robotically assisted microsurgery or telemicrosurgery is a new technique using robotic telemanipulators. This allows for the addition of optical magnification (which defines conventional microsurgery) to robotic instrument arms to allow the microsurgeon to perform complex microsurgical procedures. There are several possible applications for this platform in various microsurgical disciplines. Since 2009, basic skills training courses have been organized by the Robotic Assisted Microsurgical and Endoscopic Society. These basic courses are performed on training models in five levels of increasing complexity. This paper reviews the current state of the art in robotically asisted microsurgical training.

Keywords

References

  1. Todokoro T, Koshima I. Supermicrosurgery. In: Liverneaux PA, Berner SH, Bednar MS, et al., editors. Telemicrosurgery: robot assisted microsurgery. Paris: Springer; 2013. p.189-94.
  2. Liverneaux P, Nectoux E, Taleb C. The future of robotics in hand surgery. Chir Main 2009;28:278-85. https://doi.org/10.1016/j.main.2009.08.002
  3. Liverneaux PA, Berner SH, Bednar MS, et al. Telemicrosurgery: robot assisted microsurgery. Paris: Springer; 2013.
  4. Panchulidze I, Berner S, Mantovani G, et al. Is haptic feedback necessary to microsurgical suturing? Comparative study of 9/0 and 10/0 knot tying operated by 24 surgeons. Hand Surg 2011;16:1-3. https://doi.org/10.1142/S0218810411004984
  5. Taleb C, Nectoux E, Liverneaux PA. Telemicrosurgery: a feasibility study in a rat model. Chir Main 2008;27:104-8. https://doi.org/10.1016/j.main.2008.04.001
  6. Seyhan T, Ozerdem OR. Microsurgery training on discarded abdominoplasty material. Plast Reconstr Surg 2006;117:2536-7. https://doi.org/10.1097/01.prs.0000219995.85428.ce
  7. Hino A. Training in microvascular surgery using a chicken wing artery. Neurosurgery 2003;52:1495-7. https://doi.org/10.1227/01.NEU.0000065174.83840.62
  8. Hosnuter M, Tosun Z, Savaci N. A nonanimal model for microsurgical training with adventitial stripping. Plast Reconstr Surg 2000;106:958-9. https://doi.org/10.1097/00006534-200009020-00057
  9. Kesavadas T, Stegemann A, Sathyaseelan G, et al. Validation of Robotic Surgery Simulator (RoSS). Stud Health Technol Inform 2011;163:274-6.
  10. Perrenot C, Perez M, Tran N, et al. The virtual reality simulator $dV-Trainer(^{(R)})$ is a valid assessment tool for robotic surgical skills. Surg Endosc 2012;26:2587-93. https://doi.org/10.1007/s00464-012-2237-0
  11. Kelly DC, Margules AC, Kundavaram CR, et al. Face, content, and construct validation of the Da Vinci Skills Simulator. Urology 2012;79:1068-72. https://doi.org/10.1016/j.urology.2012.01.028
  12. Mantovani Ruggiero G. Earthworms. In: Liverneaux PA, Berner SH, Bednar MS, et al., editors. Telemicrosurgery: robot assisted microsurgery. Paris: Springer; 2013. p.53-7.
  13. Ramdhian RM, Bednar M, Mantovani GR, et al. Microsurgery and telemicrosurgery training: a comparative study. J Reconstr Microsurg 2011;27:537-42. https://doi.org/10.1055/s-0031-1285985
  14. Lee JY, Shin AY. Vessels. In: Liverneaux PA, Berner SH, Bednar MS, et al., editors. Telemicrosurgery: robot assisted microsurgery. Paris: Springer; 2013. p.59-67.
  15. Berner SH. Nerves. In: Liverneaux PA, Berner SH, Bednar MS, et al., editors. Telemicrosurgery: robot assisted microsurgery. Paris: Springer; 2013. p.69-73.
  16. Huart A, Facca S, Lebailly F, et al. Are pedicled flaps feasible in robotic surgery? Report of an anatomical study of the kite flap in conventional surgery versus robotic surgery. Surg Innov 2012;19:89-92. https://doi.org/10.1177/1553350611415869
  17. Maire N, Naito K, Lequint T, et al. Robot-assisted free toe pulp transfer: feasibility study. J Reconstr Microsurg 2012;28:481-4. https://doi.org/10.1055/s-0032-1313760
  18. Taleb C, Nectoux E, Liverneaux P. Limb replantation with two robots: a feasibility study in a pig model. Microsurgery 2009;29:232-5. https://doi.org/10.1002/micr.20602
  19. Mantovani Ruggiero G, Liverneaux P. Brachial plexus repair. In: Liverneaux PA, Berner SH, Bednar MS, et al., editors. Telemicrosurgery: robot assisted microsurgery. Paris: Springer; 2013. p.89-97.
  20. Selber JC, Pedersen JC. Muscle flaps. In: Liverneaux PA, Berner SH, Bednar MS, et al., editors. Telemicrosurgery: robot assisted microsurgery. Paris: Springer; 2013. p.145-57.
  21. Balasundaram I, Aggarwal R, Darzi LA. Development of a training curriculum for microsurgery. Br J Oral Maxillofac Surg 2010;48:598-606. https://doi.org/10.1016/j.bjoms.2009.11.010
  22. Temple CL, Ross DC. A new, validated instrument to evaluate competency in microsurgery: the University of Western Ontario Microsurgical Skills Acquisition/Assessment instrument. Plast Reconstr Surg 2011;127:215-22. https://doi.org/10.1097/PRS.0b013e3181f95adb
  23. Chan W, Niranjan N, Ramakrishnan V. Structured assessment of microsurgery skills in the clinical setting. J Plast Reconstr Aesthet Surg 2010;63:1329-34. https://doi.org/10.1016/j.bjps.2009.06.024
  24. Chan WY, Matteucci P, Southern SJ. Validation of microsurgical models in microsurgery training and competence: a review. Microsurgery 2007;27:494-9. https://doi.org/10.1002/micr.20393
  25. Selber JC, Chang EI, Liu J, et al. Tracking the learning curve in microsurgical skill acquisition. Plast Reconstr Surg 2012;130:551e-8e.
  26. Dulan G, Rege RV, Hogg DC, et al. Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 2012;152:477-88. https://doi.org/10.1016/j.surg.2012.07.028
  27. Dulan G, Rege RV, Hogg DC, et al. Content and face validity of a comprehensive robotic skills training program for general surgery, urology, and gynecology. Am J Surg 2012;203:535-9. https://doi.org/10.1016/j.amjsurg.2011.09.021

Cited by

  1. Robotic microsurgery in male infertility and urology—taking robotics to the next level vol.3, pp.1, 2013, https://doi.org/10.3978/j.issn.2223-4683.2014.01.08
  2. Robot-Assisted Pterygium Surgery: Feasibility Study in a Nonliving Porcine Model vol.4, pp.1, 2015, https://doi.org/10.1167/tvst.4.1.9
  3. Da Vinci Xi Robot–Assisted Penetrating Keratoplasty vol.6, pp.3, 2013, https://doi.org/10.1167/tvst.6.3.21
  4. A survey of current state of training of plastic surgery residents vol.10, pp.None, 2017, https://doi.org/10.1186/s13104-017-2561-5
  5. Robot‐assisted microvascular anastomosis in head and neck free flap reconstruction: Preliminary experiences and results vol.39, pp.8, 2013, https://doi.org/10.1002/micr.30458
  6. Comments on “a microsurgery training model using konjac flour noodles” vol.41, pp.6, 2013, https://doi.org/10.1002/micr.30749
  7. Research progress and development trend of surgical robot and surgical instrument arm vol.17, pp.5, 2013, https://doi.org/10.1002/rcs.2309