DOI QR코드

DOI QR Code

A Study on the Efficiency of Dye Sensitized Solar Cell Based on the Volume of Binder Addition

바인더 함량에 따른 염료감응 태양전지의 효율에 관한 연구

  • Ki, Hyun-Chul (Photonics Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Jung, Haeng-Yun (Photonics Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • 기현철 (한국광기술원 광융합시스템연구센터) ;
  • 정행윤 (한국광기술원 광융합시스템연구센터) ;
  • 구할본 (전남대학교 전기공학과)
  • Received : 2013.08.02
  • Accepted : 2013.11.05
  • Published : 2013.12.01

Abstract

In this study, we have fabricated the dye sensitized solar cell (DSSC) composed by a transparent conductive oxide (TCO), a nanocrystalline semiconductor film usually $TiO_2$, a sensitizer adsorbed on the surface of the semiconductor, an electrolyte containing a redox mediator and a counter electrode. The $TiO_2$ nanopowder was prepared by sol-gel methode. The HCl (hydrochloric acid) and TBAOH (Tetrabutyl amonium hydroxide) was added for improving the catalyst and distributed properties of $TiO_2$ nanopowder. Ammonium hydroixde was added in order to control the morphology and size of $TiO_2$ nano crystal. A $TiO_2$ paste for working electrode was prepared with the addition of HPC (hydroxypropyl cellulos) used as a binder of which volume was controled as 1.3, 1.5, 1.7, and 2.0%. The measured I-V curves of assembled DSSC showed that the cell with 1.7% HPC binder had the best efficiency of 6.79%.

Keywords

References

  1. Korea Advanced Institute of Science and Technology, Japan Fukushima Nuclear Disaster: Progress and Impact, and Lessons, 4, 18 (2011).
  2. P. Lindemann and D. SC, The World of Free Energy, 1 (2001).
  3. K. Park, H. Gu, E. M. Jin, and M. Dhayal, Electrochemica Acta., 55, 5499 (2010). https://doi.org/10.1016/j.electacta.2010.04.100
  4. M. K. Nazeeruddin, A. Kay, R. Humpbry-Baker, E. Miller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem, Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  5. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science, 285, 692 (1999). https://doi.org/10.1126/science.285.5428.692
  6. M. Gratzel, Nature, 421, 6923 (2003).
  7. M. Durr, A. Yasuda, and G. Nelle, Appl. Phys. Lett., 89, 061110 (2006). https://doi.org/10.1063/1.2266386
  8. D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, and H. Minoura, Adv. Funct. Mater., 16, 1228 (2006). https://doi.org/10.1002/adfm.200500700
  9. J. Xu, Q. Xiong, G. J. Liang, X. L. Shen, H. T. Zhou, and W .L. Xu, J. Macromol. Sci. Part B-Phys., 856 (2009).
  10. V. Dhas, S. Muduli, S. A. Rana, B. Hannoyer, R. Banerjee, and S. Ogale, Solar Energy., 85, 1213 (2011). https://doi.org/10.1016/j.solener.2011.02.029
  11. D. Wang, B. Yu, F. Zhou, C. Wang, and W. Liu, Mater. Chem. and Phys., 113, 602 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.011