DOI QR코드

DOI QR Code

Correlation Between Arrhenius Equation and Binding Energy by X-ray Photoelectron Spectroscopy

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2013.06.24
  • Accepted : 2013.11.05
  • Published : 2013.12.25

Abstract

SiOC films were prepared by capacitively coupled plasma chemical vapor deposition, and the correlation between the binding energy by X-ray photoelectron spectroscopy and Arrhenius equation for ionization energy was studied. The ionization energy decreased with increase of the potential barrier, and then the dielectric constant also decreased. The binding energy decreased with increase of the potential barrier. The dielectric constant and electrical characteristic of SiOC film was obtained by Arrhenius equation. The dielectric constant of SiOC film was decreased by lowering the polarization, which was made from the recombination between opposite polar sites, and the dissociation energy during the deposition. The SiOC film with the lowest dielectric constant had a flat surface, which depended on how carbocations recombined with other broken bonds of precursor molecules, and it became a fine cross-linked structure with low ionization energy, which contributed to decreasing the binding energy by Si 2p, C 1s electron orbital spectra and O 1s electron orbital spectra. The dielectric constant after annealing decreased, owing to the extraction of the $H_2O$ group, and lowering of the polarity.

Keywords

References

  1. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.S. Pei, Appl. Phys. Lett., 93(11), 113103 (2008) [DOI: http://dx.doi. org/10.1063/1.2982585].
  2. Hosono, H., Journal of Non-Crystalline Solids, 352, 851-858 (2006) [DOI: http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.073].
  3. Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng and J. G. Lu, Applied Physics Letters, 85, 5923-5925 (2004) [DOI: http://dx.doi. org/10.1063/1.1836870]
  4. Teresa Oh, Journal of Nanoscience and Nanothechonlogy, 12, 3322-3325 (2012) [DOI: http://dx.doi.org/10.1166/jnn.2012.5603].
  5. J. S. Park, W. J. Maeng, H. S. Kim and J. S. Park, Thin Solid Films, 520, 1679 (2012) [DOI: http://dx.doi.org/10.1016/j.tsf.2011.07.018].
  6. J. Frenkel, Phys. Rev. 54, 647-648 (1938) [DOI: http://dx.doi. org/10.1103/PhysRev.54.647].
  7. S. J Cho, In Seob Bae and Jin Hyo Boo, Thin Solid Films, 518, 6417 (2010) [DOI: http://dx.doi.org/10.1016/j.tsf.2010.04.053].
  8. Damayanti, J. Widodo, T. Sritharan, S. G. Mhaisalkar, W. Lu, Z. H. Gan, K. Y. Zeng and L. C. Hsia, aterials, Science and Engineering B, 121, 193 (2005) [DOI: http://dx.doi.org/10.1016/j.mseb.2005.03.030].
  9. N. T.Bgrav, E. Y. Danilovsky, L. E.Klyachkin, A. A. Kdryavtse, R. V. Kuzmin, A. M. Malyarenko, W. Gehlff, V. V. Romanov, Journal of Modern Physics, 2, 256-273 ( 2011) [DOI: http://dx.doi. org/10.4236/jmp.2011.24035].
  10. D. Kong, H. Jung, Y. Kim, M. Bae, J. Jang, J. Kim, W. Kim, I. Hur, D. M. Kim and D. H. Kim, Journal of the Korean Physical Society, 59, 505 (2011) [DOI: http://dx.doi.org/10.3938/jkps.59.505].
  11. S. Fernandez, A.; Martinez-Steele, J.J.; Gandia, F.B.; Naranjo, Thin Solid Films, 517, 3152 (2009) [DOI: http://dx.doi. org/10.1016/j.tsf.2008.11.097].
  12. T. Oh, Jan. J. Appl. Phys., 45, 264 (2006) [DOI: http://dx.doi.org/10.1143/JJAP.45.264].
  13. T. Oh, C. K. Choi, Journal of the Korean Physical Society, 56, 1150 (2010) [DOI: http://dx.doi.org/ 10.3938/jkps.56.1150].
  14. T. Oh, and C. H. Kim, IEEE Trans. Plasma Science, 38, 1598 (2010) [DOI: http://dx.doi.org/10.1109/TPS.2010.2049665].
  15. O. Mitrofanov and M. Manfra, J. Appl. Phys., 95, 6414 (2004) [DOI: http://dx.doi.org/10.4236/jmp.2011.24035].