DOI QR코드

DOI QR Code

Effect of an Electric Field on the AC Electrical Treeing in Various Epoxy/Reactive Diluent Systems

  • Bang, Jeong-Hwan (Department of Environmental Health, Seonam University) ;
  • Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
  • Received : 2013.08.23
  • Accepted : 2013.10.16
  • Published : 2013.12.25

Abstract

The effect of an electric field on the ac electrical treeing in various epoxy/reactive diluent systems was studied in a needle-plate electrode geometry. Diglycidyl ether of bisphenol A (DGEBA) type epoxy was used as a base resin, and 1,4-butanediol diglycidyl ether (BDGE) or polyglycol (PG) as a reactive diluent was introduced to the DGEBA system, in order to decrease the viscosity of the DGEBA epoxy system. BDGE was acted as a chain extender, and PG acted as a flexibilizer, after the curing reaction. To measure the treeing initiation time and the propagation rate, three constant alternating currents (ac) of 10, 13 and 15 kV/4.2 mm (60 Hz) were applied to the specimen, in a needle-plate electrode arrangement, at $30^{\circ}C$ of insulating oil bath. When 10 kV/4.2 mm (60 Hz) was applied, the treeing initiation time and the propagation rate in the DGEBA system were 356 min and $1.10{\times}10^{-3}$ mm/min, respectively, those in the DGEBA/BDGE system were 150 min and $1.14{\times}10^{-3}$ mm/min, respectively. Those in the DGEBA/PG system were 469 min and $1.05{\times}10^{-3}$ mm/min, respectively. As 15 kV/4.2 mm (60 Hz) was applied, the propagation rate in the DGEBA system was $5.41{\times}10^{-3}$ mm/min, and that in the DGEBA/PG system was $1.42{\times}10^{-3}$ mm/min. These values meant that PG could be used as a reactive diluent in the DGEBA system, without the deterioration of the insulation breakdown property.

Keywords

References

  1. J. Y. Lee, M. J. Shim and S. W. Kim, Polym. Eng. Sci., 39, 1993 (1999) [DOI: http://dx.doi.org/10.1002/pen.11592].
  2. Y. S. Cho, M. J. Shim and S. W. Kim, Mater. Chem. Phys., 66, 70 (2000) [DOI: http://dx.doi.org/10.1016/S0254-0584(00)00272-8].
  3. R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007) [DOI: http://dx.doi.org/10.1016/j.msea.2006.09.077].
  4. P. O. Henk, T. W. Kortsen and T. Kvarts, High Perform. Polym., 11, 281 (1999) [DOI: http://dx.doi.org/10.1088/0954-0083/11/3/304].
  5. M. Ehsani, Z. Farhadinejad, S. Moemen-bellah, S. M. Bagher alavi, M. M. S. Shrazi and H. Borsi, 26th Internal Power System Conference, Tehran, Iran, 11-E-CAM-2359 (2011).
  6. P. Bajaj, N. K. Jha and A. Kumar, J. Appl. Polym. Sci., 56, 1339 (1995) [DOI: http://dx.doi.org/10.1002/app.1995.070561015].
  7. Y. Xu, D. D. L. Chung and C. Mroz, Composites: Part A, 32, 1749 (2001) [DOI: http://dx.doi.org/10.1016/S1359-835X(01)00023-9].
  8. A. A. Wazzan, H. A. Al-Turaif and A. F. Abdelkader, Polymer-Plastics Technology and Engineering, 45, 1155 (2006) [DOI: 10.1080/03602550600887285].
  9. T. Tanaka, G. C. Montanari and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul., 11, 763 (2004) [DOI: http://dx.doi. org/10.1109/ TDEI.2004.1349782].
  10. T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako and T. Tanaka, Intern. Sympos. Electr. Insulating Materials, Kitakyushu, Japan, pp. 239 (2005).
  11. J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul. 17, 1516 (2010) [DOI: http://dx.doi.org/10.1109/TDEI.2010.5595553].
  12. D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI: http://dx.doi.org/10.1002/app.10166].
  13. J. J. Park, Trans. Electr. Electron. Mater., 14, 221 (2013) [DOI: http://dx.doi.org/10.4313/TEEM.2013.14.4.221].