DOI QR코드

DOI QR Code

Robust optimization of a hybrid control system for wind-exposed tall buildings with uncertain mass distribution

  • Received : 2013.01.28
  • Accepted : 2013.05.30
  • Published : 2013.12.25

Abstract

In this paper is studied the influence of the uncertain mass distribution over the floors on the choice of the optimal parameters of a hybrid control system for tall buildings subjected to wind load. In particular, an optimization procedure is developed for the robust design of a hybrid control system that is based on an enhanced Monte Carlo simulation technique and the genetic algorithm. The large computational effort inherent in the use of a MC-based procedure is reduced by the employment of the Latin Hypercube Sampling. With reference to a tall building modeled as a multi degrees of freedom system, several numerical analyses are carried out varying the parameters influencing the floors' masses, like the coefficient of variation of the distribution and the correlation between the floors' masses. The procedure allows to obtain optimal designs of the control system that are robust with respect to the uncertainties on the distribution of the dead and live loads.

Keywords

References

  1. Adhikari, S. and Friswell, M. I. (2007), "Random matrix eigenvalue problems in structural dynamics", Int. J. Numer. Meth. Eng., 69, 562-591. https://doi.org/10.1002/nme.1781
  2. Beyer, H.G. and Sendhoff, B. (2007), "Robust optimization - a comprehensive survey", Comput. Method. Appl. M., 196(33-34), 3190-3218. https://doi.org/10.1016/j.cma.2007.03.003
  3. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures-theory and applications: a review of recent advances", J. Intel. Mat. Syst. Str., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029
  4. Casciati S. (2008), "Stiffness identification and damage localization via differential evolution algorithms", Struct. Health Monit., 15(3) , 436-449. https://doi.org/10.1002/stc.236
  5. Chakraborty, S. and Roy, B.K. (2011), "Reliability based optimum design of Tuned Mass Damper in seismic vibration control of structures with bounded uncertain parameters", Probabilist Eng. Mech., 26(2), 215-221. https://doi.org/10.1016/j.probengmech.2010.07.007
  6. Chen, S.H., Song, M. and Chen, Y.D. (2007), "Robustness analysis of responses of vibration control structures with uncertain parameters using interval algorithm", Struct. Saf., 29(2), 94-111. https://doi.org/10.1016/j.strusafe.2006.03.001
  7. Cluni, F., Gusella, V. and Ubertini, F. (2007), "A parametric investigation of wind-induced cable fatigue", Eng. Struct., 29(11), 3094-3105. https://doi.org/10.1016/j.engstruct.2007.02.010
  8. Conn, A.R. and Le Digabel, S. (2013), "Use of quadratic models with mesh-adaptive direct search for constrained black box optimization", Optim. Method Softw., 28(1), 139-158. https://doi.org/10.1080/10556788.2011.623162
  9. Doltsinis, I. and Kang, Z. (2004), "Robust design of structures using optimization methods", Comput. Method. Appl. M., 193(23-26), 2221-2237. https://doi.org/10.1016/j.cma.2003.12.055
  10. Gioffre, M., Gusella, V., Materazzi, A.L. and Venanzi, I. (2004), "Removable guyed mast for mobile phone networks: Wind load modeling and structural response", J. Wind Eng. Ind. Aerod., 92(6), 463-475. https://doi.org/10.1016/j.jweia.2004.01.006
  11. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley Publishing Company.
  12. Grooteman, F. (2011), "An adaptive directional importance sampling method for structural reliability", Probabilist Eng. Mech., 26(2), 134-141. https://doi.org/10.1016/j.probengmech.2010.11.002
  13. Hoang, N., Fujino, Y. and Warnitchai, P. (2008), "Optimal tuned mass damper for seismic applications and practical design formulas", Eng. Struct., 30(3), 707-715. https://doi.org/10.1016/j.engstruct.2007.05.007
  14. Huntington, D.E. and Lyrintzis, C.S. (1998), "Improvements to and limitations of Latin hypercube sampling", Probabilist Eng. Mech., 13(4), 245-253. https://doi.org/10.1016/S0266-8920(97)00013-1
  15. Iman, R.L. (2008), Latin Hypercube Sampling, Encyclopedia of Quantitative Risk Analysis and Assessment.
  16. Jensen, H.A. (2006), "Structural optimization of non-linear systems under stochastic excitation", Probabilist Eng. Mech., 21(4), 397-409. https://doi.org/10.1016/j.probengmech.2006.02.002
  17. Katafygiotis, L.S. and Wang, J. (2009), "Reliability analysis of wind-excited structures using domain decomposition method and line sampling", Struct. Eng. Mech., 32(1), 37-53. https://doi.org/10.12989/sem.2009.32.1.037
  18. Lee, K.H. and Park, G.J. (2001), "Robust optimization considering tolerances of design variables", Comput. Struct., 79(1), 77-86. https://doi.org/10.1016/S0045-7949(00)00117-6
  19. Li, H.S. and Au, S.K. (2010), "Design optimization using subset simulation algorithm", Struct. Saf., 32(6), 384-392. https://doi.org/10.1016/j.strusafe.2010.03.001
  20. Marano, G.C. and Greco, R. (2009), "Robust optimum design of tuned mass dampers for high-rise buildings under moderate earthquakes", Struct. Des. Tall Spec., 18(8), 823-838. https://doi.org/10.1002/tal.462
  21. Marano, G.C., Greco, R. and Sgobba, S. (2010), "A comparison between different robust optimum design approaches: application to tuned mass dampers", Probabilist Eng. Mech., 25, 108-118. https://doi.org/10.1016/j.probengmech.2009.08.004
  22. Moreno, C.P. and Thomson, P. (2010), "Design of an optimal tuned mass damper for a system with parametric uncertainty", Ann Oper Res., 181(1), 783-793. https://doi.org/10.1007/s10479-010-0726-x
  23. Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On Latin hypercube sampling for structural reliability analysis", Struct. Saf., 25(1), 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5
  24. Pascual, B. and Adhikari, S. (2012), "Combined parametric-nonparametric uncertainty quantification using random matrix theory and polynomial chaos expansion", Comput. Struct., 112-113, 364-379. https://doi.org/10.1016/j.compstruc.2012.08.008
  25. Pradlwarter, H.J., Schueller, G.I., Koutsourelakis, P.S. and Charmpis, D.C. (2007), "Application of line sampling simulation method to reliability benchmark problems", Struct. Saf., 29(3), 208-221. https://doi.org/10.1016/j.strusafe.2006.07.009
  26. Schueller, G.I. and Jensen, H.A. (2008), "Computational methods in optimization considering uncertainties - an overview", Comput. Methods.Appl. M., 198(1), 2-13. https://doi.org/10.1016/j.cma.2008.05.004
  27. Song, S., Lu, Z. and Qiao, H. (2009), "Subset simulation for structural reliability sensitivity analysis", Reliab. Eng. Syst. Safe., 94(2), 658-665. https://doi.org/10.1016/j.ress.2008.07.006
  28. Venanzi, I., Ubertini, F. and Materazzi, A.L. (2013), "Optimal design of an array of active tuned mass dampers for wind-exposed high-rise buildings", Struct. Health Monit., 20(6), 903-917. https://doi.org/10.1002/stc.1502
  29. Venanzi, I. and Materazzi, A.L. (2012), "Acrosswind aeroelastic response of square tall buildings: a semi-analytical approach based of wind tunnel tests on rigid models", Wind Struct., 15(6), 495-508. https://doi.org/10.12989/was.2012.15.6.495
  30. Venanzi, I. and Materazzi, A.L. (2007), "Multi-objective optimization of wind-excited structures", Eng. Struct., 99(6), 983-990.
  31. Warburton, G.B. (1982), "Optimum absorber parameters for various combination of response and excitation parameters", Earthq. Eng. Struct. D., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304
  32. Zhang, H. (2012), "Interval importance sampling method for finite element-based structural reliability assessment under parameter uncertainties", Struct. Saf., 38,1-10. https://doi.org/10.1016/j.strusafe.2012.01.003

Cited by

  1. The effect of soil–foundation–structure interaction on the wind-induced response of tall buildings vol.79, 2014, https://doi.org/10.1016/j.engstruct.2014.08.002
  2. A novel approach to the optimum design of MTMDs under seismic excitations vol.23, pp.11, 2016, https://doi.org/10.1002/stc.1845
  3. Free Vibration Response of a Frame Structural Model Controlled by a Nonlinear Active Mass Driver System vol.2014, 2014, https://doi.org/10.1155/2014/745814
  4. Robust design optimization of TMDs in vehicle–bridge coupled vibration problems vol.126, 2016, https://doi.org/10.1016/j.engstruct.2016.08.033
  5. Effects of control-structure interaction in active mass driver systems with electric torsional servomotor for seismic applications vol.15, pp.4, 2017, https://doi.org/10.1007/s10518-016-0021-6
  6. Robust optimal design of tuned mass dampers for tall buildings with uncertain parameters vol.51, pp.1, 2015, https://doi.org/10.1007/s00158-014-1129-4
  7. An enhanced nonlinear damping approach accounting for system constraints in active mass dampers vol.357, 2015, https://doi.org/10.1016/j.jsv.2015.07.020
  8. Robust and reliable optimization of wind-excited cable-stayed masts vol.147, 2015, https://doi.org/10.1016/j.jweia.2015.07.011
  9. Wind-load fragility analysis of monopole towers by Layered Stochastic-Approximation-Monte-Carlo method vol.174, pp.None, 2013, https://doi.org/10.1016/j.engstruct.2018.07.081
  10. Robust design of tuned mass damper with hybrid uncertainty vol.28, pp.10, 2021, https://doi.org/10.1002/stc.2803
  11. Making design decisions under uncertainties: probabilistic reasoning and robust product design vol.57, pp.3, 2013, https://doi.org/10.1007/s10844-021-00665-6