DOI QR코드

DOI QR Code

갈색거저리(Tenebrio molitor L.) 유충의 온도발육 모형

Temperature-dependent Development Model of Larvae of Mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae)

  • 구희연 (전남농업기술원 연구개발국) ;
  • 김선곤 (전남농업기술원 연구개발국) ;
  • 오형근 (전남농업기술원 연구개발국) ;
  • 김정은 (전남농업기술원 연구개발국) ;
  • 최덕수 (전남농업기술원 연구개발국) ;
  • 김도익 (전남농업기술원 연구개발국) ;
  • 김익수 (전남대학교 농업생명과학대학 친환경농업연구소)
  • Koo, Hui-Yeon (Jeonnam Agricultural Research & Extension Services) ;
  • Kim, Seon-Gon (Jeonnam Agricultural Research & Extension Services) ;
  • Oh, Hyung-Keun (Jeonnam Agricultural Research & Extension Services) ;
  • Kim, Jung-Eun (Jeonnam Agricultural Research & Extension Services) ;
  • Choi, Duck-Soo (Jeonnam Agricultural Research & Extension Services) ;
  • Kim, Do-Ik (Jeonnam Agricultural Research & Extension Services) ;
  • Kim, Iksoo (Institute of Environmentally-Friendly Agriculture, College of Agriculture & Life Sciences, Chonnam National University)
  • 투고 : 2013.10.07
  • 심사 : 2013.11.22
  • 발행 : 2013.12.01

초록

갈색거저리의 온도에 따른 유충 발육시험을 15, 17, 20, 22, 25, 28 및 $30^{\circ}C$의 7개 항온조건, 광주기 14L:10D, 상대습도 60~70% 조건에서 수행하였다. 유충은 13령까지 경과하였고 항온 조건에서 사망률은 17, $20^{\circ}C$에서 극소수 개체만이 발견되었고, $22^{\circ}C$ 이상의 항온조건에서는 발견되지 않았다. 유충의 발육기간은 $17^{\circ}C$에서 244.3일로 가장 길었고, $30^{\circ}C$에서 110.8일로 가장 짧았다. $15^{\circ}C$는 부화되지 않아 유충 발육 조사가 불가능하였다. 온도와 발육율과의 관계를 알아보기 위하여 선형모형과 비선형모형(Logan 6)을 이용하였으며, 선형모형을 이용하여 추정한 전체유충의 발육영점온도는 $6.0^{\circ}C$, 발육 유효적산온도는 2564.1DD 였으며 선형, 비선형 모두 결정계수값($r^2$) 이 0.95로 높은 값을 보였다. 전체유충의 발육완료분포는 2-parameter Weibull 함수를 사용하였으며 전체 유충의 결정계수 값은 0.8502~0.9390의 양호한 모형 적합성을 보였다.

The developmental times of mealworm beetle larvae, Tenebrio molitor were studied at six temperatures ranging from 15 to $30^{\circ}C$ with 60~70% RH, and a photoperiod of 14L:10D. Mortality of larval period was very low at 17 and $20^{\circ}C$ but did not die over $22^{\circ}C$. Developmental time of larva was decreased with increasing temperature. The total developmental time of T. molitor larvae was longest at $17^{\circ}C$ (244.3 days) and shortest at $30^{\circ}C$ (110.8 days). Egg and larvae were not developed at $15^{\circ}C$. The lower developmental threshold and effective accumulative temperatures for the total larval stages were $6.0^{\circ}C$ and 2564.1 degree-days, respectively. The relationship between developmental rate and temperature was fitted by a linear model and nonlinear model of Logan-6($r^2$=0.95). The distribution of completion of each development stage was well described by the 2-parameter Weibull function ($r^2$=0.8502~0.9390).

키워드

참고문헌

  1. Briere, J.F., Pracros, P., 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 27, 94-101. https://doi.org/10.1093/ee/27.1.94
  2. Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  3. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Markauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  4. Connat, J.L., Delbecque, J.P., Glitho, I., Delachambre, J., 1991. The onset of metamorphosis in Tenebrio molitor larvae (Insecta, coleoptera) under grouped, isolated and starved conditions. J. Insect Physiol. 37, 653-662. https://doi.org/10.1016/0022-1910(91)90042-X
  5. Curry, G.L., Feldman, R.M., Smith, K.C., 1978a. A stochastic model of a temperature-dependent population. Theor. Popul. Biol. 13, 197-213. https://doi.org/10.1016/0040-5809(78)90042-4
  6. Curry, G.L., Feldman, R.M., Sharpe, P.J.H., 1978b. Foundations of stochastic development. J. Theor. Biol. 74, 397-410. https://doi.org/10.1016/0022-5193(78)90222-9
  7. Esperk, T., Tammaru, T., Nylin, S., 2007. Intraspecific variability in number of larval instars in insects. J. Econ. Entomol. 100, 627-645. https://doi.org/10.1603/0022-0493(2007)100[627:IVINOL]2.0.CO;2
  8. Han, M.W., Lee, J.H., Lee, M.H., 1993. Effects of temperature on development of oriental tobacco budworm, Helioverpa assulta Guenee. Kor. J. Appl. Entomol. 32, 236-244.
  9. Howe, R.W., 1967. Temperature effects on embryonic development in insects. Annu. Rev. Entomol. 10, 15-42
  10. Jeon, S.W., Cho, M.R., Kim, Y.P., Lee, S.G., Lee, J.J., Kim, S.H., Yu, J., Hwang, C.Y., 2011. Temperature-dependent development model of the striped fruit fly, Bactrocera scutellata (Hendel) (Diptera: Tephritidae). Kor. J. Appl. Entomol. 50, 373-378. https://doi.org/10.5656/KSAE.2011.11.0.61
  11. Kim, D.I., Choi, D.S., Ko, S.J., Kang, B.R., Park, C.G., Kim, S.G., Park, J.D., Kim, S.S., 2012. Comparison of development times of Myzus persicae (Hemiptera: Aphididae) between the constant and variable temperatures and its temperature-dependent development models. Kor. J. Appl. Entomol. 51, 431-438. https://doi.org/10.5656/KSAE.2012.10.0.032
  12. Kim, D.S., Lee, J.H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  13. Kim, D.S., Lee, J.H. Yiem, M.S., 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its emergence models. Environ. Entomol. 30, 298-305. https://doi.org/10.1603/0046-225X-30.2.298
  14. Kim, J.S., Kim, Y.H., Kim, T.H., Kim, J.H., Byeon, Y.W., Kim, K.H., 2004. Temperature-dependent development and its model of the melon aphid, Aphis gossypii Glover (Homoptera: Aphididae). Kor. J. Appl. Entomol. 43, 111-116.
  15. Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J., Economou, L.P., 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol. 33, 1-11. https://doi.org/10.1603/0046-225X-33.1.1
  16. Lactin, D.J., Holliday, N.J., Johnson, D.I., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  17. Liu, Y.S., Choi, Y.C., Song, H.S., 2011. Breeding and using technology of yellow mealworm beetle (Tenebrio molitor). NIAST. RDA. KOREA. pp. 14-30.
  18. Logan, J.A., Wolkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1113-1140.
  19. Logan, J.D., Wolesensky, W., Joern, A., 2006. Temperature-dependent phenology and predation in arthropod systems. Ecol. Model. 47, 160-172.
  20. Ludwig, D., 1956. Effects of temperature and parental age on the life cycle of the mealworm, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 49, 12-15. https://doi.org/10.1093/aesa/49.1.12
  21. Ludwig, D., Fiore, C., 1960. Further studies on the relationship between parental age and the life cycle of the mealworm Tenebrio molitor. Ann. Entomol. Soc. Am. 53, 595-600. https://doi.org/10.1093/aesa/53.5.595
  22. Murray, D.R.P., 1968. The importance of water in the normal growth of larvae of Tenebrio molitor. Entomol. Exp. Appl. 11, 149-168. https://doi.org/10.1111/j.1570-7458.1968.tb02041.x
  23. Park, C.G., Park, H.H., Uhm, K.B., Lee, J.H., 2010. Temperaturedependent development model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae). Kor. J. Appl. Entomol. 49, 305-312. https://doi.org/10.5656/KSAE.2010.49.4.305
  24. Park, C.G., Park, H.H., Kim, K.H., 2011. Temperature-dependent development model and forecasting of Adult emergence of overwintered small brown planthopper, Laodelphax striatellus Fallen, population. Kor. J. Appl. Entomol. 50, 343-352. https://doi.org/10.5656/KSAE.2011.50.4.343
  25. Roy, M., Brodeur, J., Cloutier, C., 2002. Relationship between temperature and development rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ. Entomol. 31, 177-187. https://doi.org/10.1603/0046-225X-31.1.177
  26. SAS Institute. 1999. SAS version 9.1, SAS, Institute Cary, N.C.
  27. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 66, 21-38.
  28. Scopes N.E.A., Biggerstaff, S.B., 1977. The use of a temperature integrator predict the developmental period of the parasite Aphidius matricariae. J. Appl. Ecol. 14, 799-802. https://doi.org/10.2307/2402811
  29. Sharpe, P.J.H., DeMichele D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  30. Systat software inc. 2002. TableCurve 2D Automated curve fitting analysis: Ver. 5.01. Systat software. inc. San jose. CA.
  31. Taylor, F., 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117, 1-23 https://doi.org/10.1086/283683
  32. Tobin, P.C., Nagarkatii, S., Saunders, M.C., 2001. Modeling development in grape berry moth (Lepidoptera: Tortricidae). Environ. Entomol. 30, 692-699. https://doi.org/10.1603/0046-225X-30.4.692
  33. Tyshchenko, V.P., Ba, A.S., 1986. Photoperiodic regulation of larval growth and pupation of Tenebrio molitor L. (Coleoptera, Tenebrionidae). Entomol. Rev. 65, 35-46.
  34. Urs, K.C.D., Hopkins, T.L., 1973. Effect of moisture on growth rate and development of two strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J. Stored Prod. Res. 8, 291-297. https://doi.org/10.1016/0022-474X(73)90045-3
  35. Wagner, T.L., Wu, H., Sharpe, P.J.H., Coulson, R.N., 1984a. Modeling distribution of insect development time: A literature review and application of weibull function. Ann. Entomol. Soc. Am. 77, 475-487. https://doi.org/10.1093/aesa/77.5.475
  36. Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., Coulson, R.N., 1984b. Modeling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
  37. Weaver, D.K., Mcfarlane, J.E., 1990. The effect of larval density on growth and development of Tenebrio molitor. J. Insect Physiol. 36, 531-536. https://doi.org/10.1016/0022-1910(90)90105-O

피인용 문헌

  1. Construction and Evaluation of Cohort Based Model for Predicting Population Dynamics of Riptortus pedestris (Fabricicus) (Hemiptera: Alydidae) Using DYMEX vol.54, pp.2, 2015, https://doi.org/10.5656/KSAE.2015.03.0.007
  2. Establishment of Optimal Rearing Conditions for the Production of Tenebrio molitor Larvae 2016, https://doi.org/10.5656/KSAE.2016.11.0.041
  3. Growth characteristics of mealworm Tenebrio molitor vol.53, pp.1, 2015, https://doi.org/10.7852/jses.2015.53.1.1
  4. Recycling Agricultural Wastes as Feed for Mealworm (Tenebrio molitor) vol.53, pp.4, 2014, https://doi.org/10.5656/KSAE.2014.10.0.043