DOI QR코드

DOI QR Code

Dissemination of Bacillus Subtilis by using Bee-vectoring Technology in Cherry Tomato Greenhouses

방울토마토 시설재배에서 비벡터링(bee-vectoring) 기술을 이용한 Bacillus Subtilis 포장내 전파

  • Park, Hong-Hyun (Crop Protection Division, Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Kim, Jeong Jun (Agricultural Microbiology Division, Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Kim, Kwang-Ho (Crop Protection Division, Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Lee, Sang-Guei (Crop Protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
  • 박홍현 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 김정준 (국립농업과학원 농업생물부 농업미생물과) ;
  • 김광호 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 이상계 (국립농업과학원 농산물안전성부 작물보호과)
  • Received : 2013.08.13
  • Accepted : 2013.10.28
  • Published : 2013.12.01

Abstract

Bee-vectoring is a new crop protection technology used for suppressing insect pests and diseases in crops by disseminating microbial agents into plants during bee pollination activities. In this study, we conducted bee-vectoring trials in cherry tomato greenhouses by using the bumble bee (Bombus terrestris), a microbial agent (Bacillus subtilis) and a new dispenser, and we measured the delivered quantity of microbial agent. Bacterial colony forming units (CFUs) in bees exiting a dispenser ranged from $9.0{\times}10^5$ to $1.9{\times}10^6$ per bee. At greenhouse trials in the National Academy of Agricultural Science (NAAS) trials, 3,300 - 8,500 CFUs per flower were counted and 80 - 100% of the flower samples contained detectable concentrations. There was no significant difference in CFU density between microbial replacement intervals (once a week vs twice a week) in the NAAS trials. In a commercial greenhouse trial, 1,800 - 2,400 CFUs per flower were found, and 83 - 93% of the flower samples contained detectable concentrations. CFUs detected in bee-vectored flowers increased by approximately 75 times before bee-vectoring. The mortality of bumble bees in the NAAS trials was, on average, 22% and little negative effects were observed on the bumble bee colonies. The yield difference for cherry tomatoes in the NAAS trials was not significant between treatments. When we select additional microbial agents that can be disseminated using this technology and create a detailed plan based on insect pests and disease incidence, we can apply this technology in greenhouses for growing tomatoes and strawberries in the near future.

비벡터링은 벌이 수정활동을 하는 동안에 이들로 하여금 병해충 방제용 미생물 제제를 식물체에 전달하게 하여 생력적으로 병해충 발생을 억제시킬 수 있게 하는 새로운 작물보호 기술이다. 국립농업과학원 시험포장과 농가포장의 방울토마토 시설하우스에서 화분매개충인 뒤영벌(Bombus terrestris), 미생물제제인 바실러스 서브틸리스(Bacillus subtilis), 그리고 자체 제작한 분배장치를 이용하여 비벡터링 시험을 수행하였고, 식물체에 전파된 미생물제제의 양과 비율을 측정하였다. 분배장치를 통과한 벌 충체에는 $9.0{\times}10^5{\sim}1.9{\times}10^6$의 세균이 검출되었다. 농과원 시험포장 방울토마토 꽃에서 측정된 세균수는 꽃당 2,600-8,600개 였으며, 80-100%의 꽃에서 검출되었다. 미생물제제를 주 1회와 주 2회 교체한 경우 처리간에는 유의한 차이가 발견되지 않았다. 농가포장에서는 꽃당 1,800-2,400개를 83-93%의 꽃에서 검출할 수 있었고, 비벡터링시험전에 비해 세균수가 75배 증가되었다. 비벡터링 시험에 따른 벌 사망률은 22% 정도로 무처리구와 차이는 없었고, 따라서 미생물제제가 뒤영벌에 대한 부작용은 거의 없는 것으로 판단되었다. 비벡터링 기술 적용에 따른 방울토마토의 수확량은 무처리구와 비교해서 차이가 없었다. 앞으로 뒤영벌에 안전하면서 병해충에 대한 방제효과가 좋은 미생물 제제들을 선발하고, 병해충 발생에 따라 이 기술의 운용 전략 등을 세심하게 가다듬으면 화분매개곤충을 이용하는 토마토, 딸기 재배에서 이 기술의 실용화는 매우 가까이에 왔다고 볼 수 있다.

Keywords

References

  1. Al-mazra'awi, M., Shipp, J.L., Broadbent, B., P. Kevan, P., 2006a. Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol. Control 37, 89-97. https://doi.org/10.1016/j.biocontrol.2005.11.014
  2. Al-mazra'awi, M.S., Shipp, L., Broadbent, B., Kevan, P., 2006b. Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control of tarnished plant bug (Hemiptera: Miridae) on canola. Environ. Entomol. 35, 1569-1577. https://doi.org/10.1603/0046-225X(2006)35[1569:DOBBBH]2.0.CO;2
  3. Al-mazra'awi, M.S., Kevan, P.G., Shipp, L., 2007. Development of Beauveria bassiana dry formulation for vectoring by honey bees Apis mellifera (Hymenoptera: Apidae) to the flowers of crops pest control. Biocontrol Sci. Techn. 17, 733-741. https://doi.org/10.1080/09583150701484759
  4. Dimou, M., Taraza, S., Thrasyvoulou, A., Vasilakakis, M., 2008. Effect of bumble bee pollination on greenhouse strawberry production. J. Apicult. Res. 47, 99-101.
  5. Kapongo, J.P., Shipp, L., Kevan, P., Broadbent, B., 2008a. Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. BioControl 53, 797-812. https://doi.org/10.1007/s10526-007-9142-9
  6. Kapongo, J.P., Shipp, L., Kevan, P., Sutton, J.C., 2008b. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol. Control 46, 508-514. https://doi.org/10.1016/j.biocontrol.2008.05.008
  7. Kevan, P.G., Straver, W.A., Offer, M., and Laverty, T.M., 1991. Pollination of greenhouse tomatoes by bumble bees in Ontario. Proc. Ent. Soc. Ontario 122, 15-19.
  8. Kevan, P.G., Kapongo, J.P., Al-mazra'awi, M., Shipp, L., 2008. Honey bees, bumble bees, and biocontrol. In: James, R.R., Pitts-Singer, T.L. (Eds.), Bee pollination in agricultural ecosystems. Oxford university press. pp. 65-79.
  9. Kevan, P.G., Cooper, E., Morse, A., Kapongo, J.P., Shipp, L., Kholsa, S., 2009. Measuring foraging activity in bumblebee nests: a simple nest-entrance trip recorder. J. Appl. Entomol. 133, 222-228. https://doi.org/10.1111/j.1439-0418.2008.01338.x
  10. Korea Crop Protection Association (KCPA), 2011. Agro-Pesticide user guide. SamJung Press. 1311pp.
  11. Loose, J.L., Drummond, F.A., Stubbs, C., Woods, S., Hoffmann, S., 2005. Conservation and management of native bees in cranberry. Maine agricultural and forest experimental station technical bulletin # 191, University of Maine, Orono, ME.
  12. Mommaerts, V., Put, K., Vandeven, J., Jans, K., Sterk, G., Hoffman, L., Smagghe, G., 2010a. Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhous strawberries. Pest Manag. Sci. 66, 1199-1207. https://doi.org/10.1002/ps.1995
  13. Mommaerts, V., Sterk, G., Hoffmann, L., Smagghe, G., 2010b. A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator Bombus terrestris. Pest Manag. Sci. 65, 949-955.
  14. Mommaerts, V., Put, K., Smagghe, G., 2011. Bombus terrestris as pollinator and vector to suppress Botrytis cinerea in greenhouse strawberry. Pest Manag. Sci. 67, 1069-1075.
  15. Mommaerts, V., Smagghe, G., 2011. Entomovectoring in plant protection. Arthropod-Plant Inte. 5, 81-95. https://doi.org/10.1007/s11829-011-9123-x
  16. Morandin, L.A., Laverty, T.M., Kevan, P.G., Khosla, S., Shipp, L., 2001. Bumble bee (Hymenoptera: Apidae) activity and loss in commercial tomato greenhouses. Can. Entomol. 133, 883-893. https://doi.org/10.4039/Ent133883-6
  17. Park, H.H., Kim, J.J., Mustafa, G., Shipp, L., 2011. Crop protection using entomopathogenic microbials and bee-vectoring technology in Korea. Proceedings of Korean Applied Entomology for 2011 fall meeting. p 3.
  18. Peng, G., Sutton, J.C., Kevan, P.G., 1992. Effectiveness of honeybees for applying the biocontrol agent Gliocladium rosea to strawberry flowers to suppress Botrytis cinerea. Can. J. Plant Pathol. 14, 117-129. https://doi.org/10.1080/07060669209500888
  19. Serrano, A.R., Guerra-Sanz, J.M., 2006. Quality fruit improvement in sweet pepper culture by bumblebee pollination. Sci. Hortic. 110, 160-166. https://doi.org/10.1016/j.scienta.2006.06.024
  20. Shipp, J.L., Whitfield, G.H., Papadopoulos, A.P., 1994. Effectiveness of the bumble bee, Bombus impatiens Cresson (Hymenoptera: Apidae), as a pollinator of greenhouse sweet pepper. Sci. Hortic. 57, 29-39. https://doi.org/10.1016/0304-4238(94)90032-9
  21. Shipp, L., Kapongo, J.P., Park, H.H., Kevan, P., 2012. Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions. Biol. Control 63, 135-142. https://doi.org/10.1016/j.biocontrol.2012.07.008
  22. Sutton, J.C., Peng, G., 1993. Manipulation and vectoring of biocontrol organisms to manage foliage and fruit disease in cropping systems. Annu. Rev. Phytopathol. 31, 473-493. https://doi.org/10.1146/annurev.py.31.090193.002353
  23. Turner, J.T., Backman, P.A., 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75, 347-353. https://doi.org/10.1094/PD-75-0347
  24. Yoon, H.J., Kim, M.A., Lee, S.B., Han, S.M., Kim. W.T., 2007. Understanding bumblebees. National Institute of Agricultural Science and Technology, RDA, Rep. of Korea. 76pp.
  25. Yoon, H.J., Kim, J.Y., Lee, K.Y., Lee, S.B., Park, I.G., Noh, S.K., 2008. Comparision of the colony development of the bumblebees, Bombus terrestris produced from domestic ad foreign bumblebees companies. Korean J. Appl. Entomol. 47, 95-100. https://doi.org/10.5656/KSAE.2008.47.1.095
  26. Yu, H., Sutton, J.C., 1997. Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea. Biol. Control 10, 113-122. https://doi.org/10.1006/bcon.1997.0562