DOI QR코드

DOI QR Code

Suppression of Gene Expression in the Fifth Instar Larvae of Spodoptera exigua at Low Developmental Threshold Temperature

발육영점온도에서 파밤나방 5령 유충의 유전자 발현 저하

  • Choi, Bongki (Department of Bioresource Sciences, Andong National University) ;
  • Park, Youngjin (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 최봉기 (안동대학교 생명자원과학과) ;
  • 박영진 (안동대학교 생명자원과학과) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Received : 2013.05.27
  • Accepted : 2013.08.30
  • Published : 2013.12.01

Abstract

This study aimed to understand the physiological status of the beet armyworm, Spodoptera exigua at low developmental threshold temperature (LTT) through analysis of gene-expression patterns associated with different functions (metabolism, nervous system, immune, and stress). The estimated LTTs for egg, larval, and pupal developments varied with $5.5{\sim}11.6^{\circ}C$. Larvae were able to develop at the lower temperatures than eggs and pupae. However, the physiological LTT ($15^{\circ}C$) in the fifth instar was much higher than the estimated LTT ($10.3^{\circ}C$). Gene expression patterns estimated by a quantitative RT-PCR (qRT-PCR) indicate that most genes in different functional groups increased their expressions with increase of larval instars. In the same fifth instar, as the treatment temperatures increased, the gene expression levels increased. Moreover, the newly molted fifth instar larvae were different in their gene expression rates according to their previous culturing temperatures. Most gene expressions were suppressed in the fifth instar larvae at the physiological LTT ($15^{\circ}C$). However, the larvae at $15^{\circ}C$ gradually exhibited significant increase in the gene expression rates with rearing time just like those at the higher temperature. These results suggest that S. exigua at LTT exhibits a typical gene expression pattern with maintaining significantly suppressed levels.

파밤나방(Spodoptera exigua)의 발육을 일으키는 최저온도를 결정하고, 이 상태의 생리적 특성을 서로 다른 기능군(대사, 신경, 면역 및 스트레스) 유전자의 발현 양상을 이해하기 위해 본 연구를 수행하였다. 알부터 번데기까지 파밤나방의 발육영점온도는 $5.5{\sim}11.6^{\circ}C$로 다양하였다. 유충은 알과 번데기에 비해 비교적 낮은 온도에서 발육이 가능하였다. 5령충의 경우 생리적 발육영점온도가 추정치($10.3^{\circ}C$)와 다르게 이보다 높은 $15^{\circ}C$에서 관찰되었다. 정량적 RT-PCR로 분석된 유전자의 발현양상은 유충 영기가 진행됨에 따라 모든 기능군의 대부분 유전자의 발현량이 증가하였고, 또한 5령 시기에서도 처리온도가 증가함에 따라 이들 유전자의 발현량도 증가하였다. 비록 동일한 갓 탈피한 5령이라 하더라도 이전에 노출된 외부 온도에 따라 발현량이 상이하였다. 5령충의 생리적 발육영점온도인 $15^{\circ}C$에서 대부분의 유전자 발현량은 저하되었다. 그러나 높은 온도에서와 마찬가지로 발육기간이 증가함에 따라 이들 유전자의 발현량이 증가하였다. 이상의 결과는 발육영점온도에서 파밤나방의 발육 관련 유전자의 발현이 전체적으로 수준은 낮지만 지속적으로 진행되고 있다는 것을 의미한다.

Keywords

References

  1. Chen, S., Fleischer, S.J., Tobin, P.C., Saunders, M.C., 2011. Projecting insect voltinism under high and low greenhouse gas emission conditions. Environ. Entomol. 40, 505-515. https://doi.org/10.1603/EN10099
  2. Feng, H.Q., Wu, K.M., Cheng, D.F., Guo, Y.Y., 2003. Radar observations of the autumn migration of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 93, 115-124.
  3. Fey, R.E., Carranza, R.L., 1973. Cotton pests: overwintering of three lepidopterous species in Arizona. J. Econ. Entomol. 66, 657-659. https://doi.org/10.1093/jee/66.3.657
  4. Garrity, P.A., Goodman, M.B., Samuel, A.D., Sengupta, P., 2010. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev. 24, 2365-2382. https://doi.org/10.1101/gad.1953710
  5. Goh, H.G., Lee, S.G. , Lee, B P. , Choi, G.M. and Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
  6. Goh, H.G., 1993. Ecological aspects of the beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), major pest of vegetables. Ph.D. Dissertation. 77 pp. Chungbuk National University, Chungju, Korea.
  7. Hong, S.T., Bang, S., Hyun, S., Kang, J., Jeong, K., Paik, D., Chung, J., Kim, J., 2008. cAMP signalling in mushroom bodies modulates temperature preference behavior in Drosophila. Nature 454, 771-775.
  8. Jiang, X., Zhai, H., Wang, L., Luo, L., Sappington, T.W., Zhang, L., 2012. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development. Cell Stress Chaperons 17, 67-80. https://doi.org/10.1007/s12192-011-0286-2
  9. Kang, J., Kim, J., Choi, K.W., 2011. Novel cytochrome P450, cyp6a17, is required for temperature preference behavior in Drosophila. PLoS One 6, e29800. https://doi.org/10.1371/journal.pone.0029800
  10. Kim, Y., Kim, K., 1998. Analysis of the isozyme loci of the beet armyworm, Spodoptera exigua (Hubner). Kor. J. Appl. Entomol. 37, 19-22.
  11. Kim, Y., Kwon, D., Kim, C., 2000. Effect of fluctuating temperature on development of the beet armyworm, Spodoptera exigua (Hubner). Kor. J. Soil Zool. 5, 119-123.
  12. Kim, Y., Song, W., 2000. Effect of thermoperiod and photoperiod on cold tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 29, 868-873. https://doi.org/10.1603/0046-225X-29.5.868
  13. Lee, S.D., 1993. Effects of host plants and temperature on the development of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). M.S. Thesis. 36 pp. Gyeongsang National University, Jinju, Korea.
  14. Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Entomol. 25, 697-743.
  15. Linquist, S., 1986. The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191. https://doi.org/10.1146/annurev.bi.55.070186.005443
  16. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}$ CT method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  17. Mikkola, K., 1970. The interpretation of long-range migrations of Spodoptera exigua Hb (Lepidoptera: Noctuidae). J. Anim. Ecol. 39, 593-598. https://doi.org/10.2307/2856
  18. Mirth, C., Riddiford, L.M., 2007. Size assessment and growth control: how adult size is determined in insects. Bioassays 29, 344-355. https://doi.org/10.1002/bies.20552
  19. Mirth, C., Truman, J.W., Riddiford, L.M., 2005. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr. Biol. 15, 1796-1807. https://doi.org/10.1016/j.cub.2005.09.017
  20. Muturi, E.J., Nyakeriga, A., Blackshear, M., 2012. Temperaturemediated differential expression of immune and stress-related genes in Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 28, 79-83. https://doi.org/10.2987/11-6194R.1
  21. Neely, G.G., Keene, A.C., Duchek, P., Chang, E.C., Wang, Q.P., Aksoy, Y.A., Rosenzweig, M., Costigan, M., Woolf, C.J., Garrity, P.A., Penninger, J.M., 2011. TrpA1 regulates thermal nociception in Drosophila. PLoS One 6, e24343. https://doi.org/10.1371/journal.pone.0024343
  22. Nijhout, H.F., 2003. The control of body size in insects. Dev. Biol. 261, 1-9. https://doi.org/10.1016/S0012-1606(03)00276-8
  23. Ritossa, F., 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573. https://doi.org/10.1007/BF02172188
  24. SAS Institute, Inc. 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
  25. Song, W., Kim, Y., Cho, J., Kim, H., Lee, J., 1997. Physiological factors affecting rapid cold hardening of the beet armyworm, Spodoptera exigua (Hübner). Kor. J. Appl. Entomol. 36, 249-255.
  26. Xu, Q., Zou, Q., Zheng, H., Zhang, F., Tang, B., Wang, S., 2011. Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. 159B, 92-102.
  27. Zheng, X., Cheng, W., Wang, X., Lei, C., 2011. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua. Cryobiology 63, 164-169 https://doi.org/10.1016/j.cryobiol.2011.07.005
  28. Zheng, X.L., Wang, P., Cheng, W.J., Wang, X.P., Lei, C.L., 2012. Projecting overwintering regions of the beet armyworm. Spodoptera exigua in China using the CLIMEX model. J. Insect Sci. 12, 13.

Cited by

  1. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella vol.67, 2014, https://doi.org/10.1016/j.jinsphys.2014.06.010
  2. RNA interference of a heat shock protein, Hsp70, loses its protection role in indirect chilling injury to the beet armyworm, Spodoptera exigua vol.168, 2014, https://doi.org/10.1016/j.cbpa.2013.11.011