DOI QR코드

DOI QR Code

Preparation and Photoluminescence of Green-Emitting Phosphors SrGa2S4:Eu

  • Na, Sang-Hee (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Cho, Young-Sik (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Do, Young Rag (Department of Chemistry, Kookmin University) ;
  • Huh, Young-Duk (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University)
  • 투고 : 2013.09.03
  • 심사 : 2013.09.28
  • 발행 : 2013.12.20

초록

키워드

Experimental Section

SrS (99.9%, Strem Chemicals), Ga2S3 (99.99%, Alfa Aesar), S (99.98%, Aldrich), Eu(NO3)3·5H2O (99.9%, Aldrich), Ga(NO3)3·xH2O (99.9%, Aldrich), tetramethyl ammonium chloride (Me4NCl, 98%, Aldrich), and dimethyldithiocarbamic acid sodium salt dihydrate (NaMe2dtc·2H2O, 98%, TCI) were used as received, without any further purification. A europium complex, (Me4N)Eu(Me2dtc)4, was precipitated by mixing of 10 mL of 0.25 M Me4NCl, 10 mL of 0.25 M Eu(NO3)3·6H2O, and 10 mL of 1.0 M NaMe2dtc·2H2O aqueous solutions at room temperature. A gallium complex, Ga(Me2dtc)3, was precipitated by mixing 10 mL of 0.25 M Ga(NO3)3·xH2O and 10 mL of 0.75 M NaMe2dtc·2H2O aqueous solutions at room temperature. The (Me4N)Eu(Me2dtc)4 and Ga(Me2dtc)3 products were filtered, and dried under vacuum at room temperature.

SrGa2S4:Eu phosphors were prepared by a solid-state reaction, with a double crucible configuration system. One crucible was nestled in the other, with activated carbon as a reduction atmosphere in between. The starting materials were SrS, Ga2S3, (Me4N)Eu(Me2dtc)4, S, and a flux. One of Li2CO3, Na2CO3, KBr, KI, or NaCl was used as the flux. The 0.20 mmol of flux and 50 mol of S were used, respectively. For the typical preparation of Sr0.96Ga2S4:0.04Eu phosphor, the mixture of 3.84 mmol of SrS, 4.0 mmol of Ga2S3, 0.16 mmol of (Me4N)Eu(Me2dtc)4, 50 mol S, and 0.20 mmol Li2CO3 was fired at 850 ℃ for 1.5 h in a box furnace. In this SrGa2S4:Eu phosphor, the atomic molar ratio of Sr:Ga:Eu was 0.96:2:0.04. Thus, the phosphor of Sr0.96Ga2S4:0.04Eu formula was formed. To investigate the emission spectra dependence on the reaction temperature as one of the synthetic conditions, we used various reaction temperatures (550 ℃, 650 ℃, 750℃, 850 ℃, and 950 ℃), with the other synthetic conditions kept the same. Similarly, we also examined the various synthetic conditions (reaction time, choice of flux, and amount of activator), with the other synthetic conditions kept the same. The commercial SrGa2S4:Eu phosphor was obtained from Phosphor Tech. Ltd.

Excitation and emission spectra of the SrGa2S4:Eu phosphors were obtained by using a spectrum analyzer (DARSA, PSI). The excitation spectra were obtained by fixing the emission wavelength (λem) of 535 nm. Similarly, the emission spectra were obtained by fixing the excitation wavelength (λex) of 465 nm, which was the wavelength of the commercial blue InGaN LED chip. The crystal structures of the SrGa2S4:Eu phosphors were analyzed by using powder Xray diffraction (XRD, Rigaku DMAX-3A) with Cu Kα radiation. The morphologies of the SrGa2S4:Eu phosphors were examined with scanning electron microscopy (SEM, Hitachi S-4300).

참고문헌

  1. Chartier, C.; Barthou, C.; Benalloul, P.; Frigerio, J. M. J. Lumin. 2005, 111, 147. https://doi.org/10.1016/j.jlumin.2004.07.006
  2. Dorenbos, P. J. Lumin. 2003, 104, 239. https://doi.org/10.1016/S0022-2313(03)00078-4
  3. Yang, S.; Stoffers, C.; Zhang, F.; Jacobsen, S. M.; Wagner, B. K.; Summers, C. J. Appl. Phys. Lett. 1998, 72, 158. https://doi.org/10.1063/1.120674
  4. Na, S. H.; Sung, H. J.; You, Y. C.; Ko, K. Y.; Do, Y. R.; Huh, Y. D. Bull. Korean Chem. Soc. 2006, 27, 1708. https://doi.org/10.5012/bkcs.2006.27.10.1708
  5. Mukai, T.; Yamada, M.; Nakamura, S. Jpn. J. Appl. Phys. 1998, 37, L1358. https://doi.org/10.1143/JJAP.37.L1358
  6. Schlotter, P.; Baur, J.; Hielscher, Ch.; Kunzer, M.; Obloh, H.; Schmidt, R.; Schneider, J. Mater. Sci. Eng. B 1999, 59, 390. https://doi.org/10.1016/S0921-5107(98)00352-3
  7. Yam, F. K.; Hassan, Z. Microelectron. J. 2005, 36, 129. https://doi.org/10.1016/j.mejo.2004.11.008
  8. Mueller-Mach, R.; Mueller, G. O.; Krames, M. R.; Trottier, T. IEEE J. Selected Topics Quantum Electron. 2002, 8, 339. https://doi.org/10.1109/2944.999189
  9. Schlotter, P.; Schmidt, R.; Schneider, J. Appl. Phys. A 1997, 64, 417. https://doi.org/10.1007/s003390050498
  10. Huh, Y. D.; Cho, Y. S.; Do, Y. R. Bull. Korean Chem. Soc. 2002, 23, 1435. https://doi.org/10.5012/bkcs.2002.23.10.1435
  11. Huh, Y. D.; Shim, J. H.; Kim, Y. H.; Do, Y. R. J. Electrochem. Soc. 2003, 150, H57. https://doi.org/10.1149/1.1535914
  12. Yang, C. C.; Lin, C. M.; Chen, Y. J.; Wu, Y. T.; Chuang, S. R.; Liu, R. S.; Hu, S. F. Appl. Phys. Lett. 2007, 90, 123503. https://doi.org/10.1063/1.2714326
  13. Ko, K. Y.; Huh, Y. D.; Do, Y. R. Bull. Korean Chem. Soc. 2008, 29, 822. https://doi.org/10.5012/bkcs.2008.29.4.822
  14. Do, Y. R.; Bae, J. W.; Kim, Y.; Yang, H. G. Bull. Korean Chem. Soc. 2000, 21, 295.
  15. Kim, J. M.; Kim, K. N.; Park, J. K.; Kim, C. H.; Jang, H. G. J. Korean Chem. Soc. 2004, 48, 371. https://doi.org/10.5012/jkcs.2004.48.4.371
  16. Jiang, Y. D.; Villalobos, G.; Souriau, J. C.; Paris, H.; Summers, C. J.; Wang, Z. L. Solid State Commun. 2000, 113, 475. https://doi.org/10.1016/S0038-1098(99)00493-7
  17. Huh, Y. D.; Shim, J. H.; Do, Y. R. J. Korean Chem. Soc. 2002, 46, 164. https://doi.org/10.5012/jkcs.2002.46.2.164
  18. Kim, J. M.; Kim, K. N.; Park, J. K.; Kim, C. H.; Jang, H. G. J. Korean Chem. Soc. 2005, 49, 138. https://doi.org/10.5012/jkcs.2005.49.2.138

피인용 문헌

  1. Highly Luminescent Multicomponent Green Phosphor for a White Light-emitting Diode vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10322
  2. : Eu. vol.45, pp.10, 2014, https://doi.org/10.1002/chin.201410016
  3. Photoluminescence properties of tunable emission (Sr1- x Eu x )2Ga2S5 phosphors vol.226, pp.2, 2021, https://doi.org/10.1016/j.ijleo.2020.165930