DOI QR코드

DOI QR Code

Organocatalytic Oxidative Enamine Catalysis and 1,5-Hydride Transfer/Cyclization: Synthesis of Tetrahydroquinoline Derivatives

  • Kim, Mi Hyun (Department of Chemistry, Soonchunhyang University) ;
  • Kim, Dae Young (Department of Chemistry, Soonchunhyang University)
  • Received : 2013.08.05
  • Accepted : 2013.09.20
  • Published : 2013.12.20

Abstract

Keywords

Experimental

General Procedure for the Synthesis of Tetrahydroquinoline Derivatives 2: To a stirred solution of 3-(o-(dialkylamino) aryl)propanals 1 (0.3 mmol) in CH2Cl2 (1.0 mL) was added DDQ (68.1 mg, 0.3 mmol), racemic diarylprolinol silylether catalyst III (35.9 mg, 0.06 mmol), and DNBS (14.9 mg, 0.06 mmol). The mixture was refluxed for 0.5-7 d, diluted with saturated NaHCO3 solution (10 mL) and extracted with ethyl acetate (2 × 15 mL). The combined organic layers were dried over MgSO4, filtered, concentrated, and purified by flash chromatography (EtOAc/hexane = 1:10) to afford tetrahydroquinoline derivatives 2.

6R,6aS)-5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2- a]quinoline-6-carbaldehyde (2a): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.83 (d, J = 0.8 Hz, 1H), 7.14- 7.07 (m, 2H), 6.80-6.77 (m, 1H), 6.70 (td, J = 7.2 Hz, 1.2 Hz, 1H), 3.76 (dt, J = 10.8 Hz, 2.4 Hz, 1H), 3.67 (ddd, J = 14.8 Hz, 8.0 Hz, 3.6 Hz, 1H), 3.22 (ddd, J = 14.8 Hz, 6.8 Hz, 3.6 Hz, 1H), 3.05-2.98 (m, 1H), 2.87 (dd, J = 16.8 Hz, 5.6 Hz, 1H), 2.70-2.65 (m, 1H), 1.84-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 203.21, 144.97, 129.77, 127.35, 120.33, 117.04, 115.24, 58.88, 56.79, 48.00, 28.87, 27.62, 27.25, 25.44, 25.09, 24.74, 23.33; EI-MS: m/z 258.1 [M+H]+; ESIHRMS: m/z calcd for C17H24NO [M+H]+: 258.1861; found 258.1858.

(6R,6aR)-6,6a,7,8,9,10,11,12-Octahydro-5H-azocino[1,2- a]quinoline-6-carbaldehyde (2b): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.50 (d, J = 0.4 Hz, 1H), 7.08- 7.03 (m, 2H, 6.61-6.54 (m, 2H), 3.84-3.79 (m, 2H), 3.24- 3.21 (m, 1H), 3.20-3.06 (m, 2H), 2.54-2.51 (m, 1H), 2.01- 1.32 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 203.32, 143.98, 129.52, 127.54, 117.37, 115.53, 111.33, 55.45, 53.15, 48.65, 33.90, 27.82, 26.91, 26.26, 26.09, 24.17; EI-MS: m/z 244.1 [M+H]+; ESI-HRMS: m/z calcd for C16H22NO [M+H]+: 244.1701; found 244.1697.

(6R,6aS)-5,6,6a,7,8,9,10,11-Octahydroazepino[1,2-a]quinoline- 6-carbaldehyde (2c): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.55 (s, 1H), 7.06-7.01 (m, 2H), 6.52- 6.54 (m, 1H), 6.40-6.48 (m, 1H), 3.85 (dd, J = 6.0 Hz, 3.0 Hz, 1H), 3.82-3.79 (m, 1H), 3.22-3.09 (m, 2H), 3.02 (dd, J = 8.0 Hz, 6.5 Hz, 1 H), 2.54-2.52 (m, 1H), 1.81-1.95 (m, 1H), 1.67-1.57 (m, 6H), 1.37-1.34 (m, 1H) ; 13C NMR (100 MHz, CDCl3) δ 203.17, 144.90, 129.50, 127.53, 117.15, 115.67, 110.39, 58.26, 49.58, 47.95, 35.02, 26.63, 26.13, 25.94, 23.80; EI-MS: m/z 230.1 [M+H]+; ESI-HRMS: m/z calcd for C15H20NO [M+H]+: 230.1545; found 230.1541.

(4aS,5R)-2,3,4,4a,5,6-Hexahydro-1H-pyrido[1,2-a]quinoline- 5-carbaldehyde (2d): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.63 (d, J = 1.6 Hz, 1H), 7.10 (td, J = 8.4 Hz, 1.6 Hz, 1H), 7.03-7.01 (m, 1H), 6.78-6.76 (m, 1H), 6.67 (td, J = 7.2 Hz, 0.8 Hz, 1H), 3.95-3.91 (m, 1H), 3.45 (ddd, J = 10.8 Hz, 5.2 Hz, 2.0 Hz, 1H), 2.99 (dd, J = 15.2 Hz, 6.4 Hz, 1H), 2.90-2.84 (m, 2H), 2.63-2.58 (m, 1H), 1.90- 1.50 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 202.72, 145.73, 128.89, 127.65, 122.10, 117.62, 112.60, 56.53, 52.01, 48.39, 31.26, 25.99, 24.98, 24.06; EI-MS: m/z 216.1 [M+H]+.

(3aS,4R)-1,2,3,3a,4,5-Hexahydropyrrolo[1,2-a]quinoline- 4-carbaldehyde (2e): Major diastereoisomer; 1H NMR (400 MHz, CDCl3) δ 9.91 (d, J = 2.0 Hz, 1H), 7.11-7.08 (m, 1H), 7.35 (d, J = 7.0 Hz, 1H), 6.60-6.57 (m, 1H), 6.44 (d, J = 8.0 Hz, 1H) 3.49 (ddd, J = 10.4 Hz, 10.1 Hz, 4.9 Hz, 1H), 3.38 (ddd, J = 11.1 Hz, 8.9 Hz, 2.1 Hz, 1H), 3.22-3.17 (m, 1H), 2.93-2.91 (m, 2H), 2.50-2.41 (m, 1H), 2.32-2.28 (m, 1H), 2.13-2.10 (m, 1H), 1.97-1.95 (m, 1H), 1.58-1.54 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 202.99, 143.89, 128.70, 127.76, 119.06, 115.48, 110.45, 57.75, 50.35, 46.64, 31.62, 28.59, 24.02; EI-MS: m/z 202.1 [M+H]+; ESI-HRMS: m/z calcd for C13H16NO [M+H]+: 202.1232; found 202.1238.

(6R,6aS)-3-Bromo-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2f): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.81 (d, J = 0.8 Hz, 1H), 7.19-7.17 (m, 2H), 6.65-6.62 (m, 1H), 3.76 (dt, J = 10.4 Hz, 2.8 Hz, 1H), 3.61 (ddd, J = 14.8 Hz, 7.6 Hz, 3.2 Hz, 1H), 3.21 (ddd, J = 14.8 Hz, 6.8 Hz, 3.2 Hz, 1H), 3.01 (dd, J = 16.8 Hz, 13.6 Hz, 1H), 2.82 (dd, J = 17.2 Hz, 5.6 Hz, 1H), 2.67-2.61 (m, 1H), 1.90-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 202.46, 143.95, 132.07, 130.11, 122.40, 116.58, 108.80, 58.92, 56.75, 47.82, 28.81, 27.46, 27.10, 25.51, 25.16, 24.74, 23.15; EI-MS: m/z 336.0 [M+H]+.

(6R,6aS)-3-Fluoro-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2g): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.82 (d, J = 0.4 Hz, 1H), 6.86-6.77 (m, 2H), 6.71 (dd, J = 8.8 Hz, 4.8 Hz, 1H), 3.75 (dt, J = 11.2 Hz, 2.8 Hz, 1H), 3.54 (ddd, J = 14.8 Hz, 8.4 Hz, 3.6 Hz, 1H), 3.21 (ddd, J = 14.8 Hz, 6.4 Hz, 3.2 Hz, 1H), 3.03 (dd, J = 16.4 Hz, 13.6 Hz, 1H), 2.82 (dd, J = 16.8 Hz, 5.2 Hz, 1H), 2.70-2.64 (m, 1H), 1.90-1.25 (m, 11H), 1.15-1.05 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 202.77, 155.38 (d, J = 234.7 Hz), 141.38, 121.78 (d, J = 7.1 Hz), 116.55 (d, J = 8.4 Hz), 115.62 (d, J = 21.7 Hz), 114.08 (d, J = 22.0 Hz), 58.20, 57.21, 47.47, 28.52, 27.53, 27.44, 24.89, 24.55, 24.31, 23.38; EI-MS: m/z 276.1 [M+H]+.

(6R,6aS)-3-(Trifluoromethyl)-5,6,6a,7,8,9,10,11,12,13- decahydroazonino[1,2-a]quinoline-6-carbaldehyde (2h): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.50 (s, 1H), 7.30-7.28 (m, 2H), 6.66-6.64 (m, 1H), 3.92-3.88 (m, 1H), 3.72 (ddd, J = 12.4 Hz, 6.4 Hz, 3.2 Hz, 1H), 3.27 (ddd, J = 15.2 Hz, 7.6 Hz, 3.2 Hz, 1H), 3.18-3.14 (m, 1H), 3.12- 3.10 (m, 1H), 2.61 (dt, J = 6.4 Hz, 2.4 Hz, 1H), 1.90-1.30 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 202.31, 147.19, 126.57 (q, J = 3.6 Hz), 124.60 (q, J = 4.1 Hz), 123.81 (q, J = 265.2), 117.19, 116.99 (q, J = 32.2 Hz), 110.71, 59.84, 56.65, 48.75, 33.22, 30.92, 27.69, 26.57, 26.39, 25.35, 23.75; EI-MS: m/z 326.1 [M+H]+.

(6R,6aS)-2-Chloro-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2i): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.81 (d, J = 0.4 Hz, 1H), 6.98-6.96 (m, 1H), 6.72-6.70 (m, 1H), 6.64 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 3.77 (dt, J = 10.8 Hz, 2.4 Hz, 1H), 3.64 (ddd, J = 15.2 Hz, 7.2 Hz, 3.6 Hz, 1H), 3.22 (ddd, J = 14.8 Hz, 7.2 Hz, 3.6 Hz, 1H), 3.02-2.94 (m, 1H), 2.82 (dd, J = 17.2 Hz, 5.6 Hz, 1H), 2.64 (ddd, J = 13.6 Hz, 5.2 Hz, 4 Hz, 1H), 1.90-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 202.53, 145.92, 132.75, 130.66, 118.62, 116.85, 114.40, 58.98, 56.75, 48.11, 29.06, 27.40, 17.10, 25.60, 25.24, 24.77, 22.87; EI-MS: m/z 292.1 [M+H]+.

(6R,6aS)-2-Methoxy-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2j): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.81 (d, J = 0.8 Hz, 1H), 7.00-6.98 (m, 1H), 6.31-6.29 (m, 2H), 3.78 (s, 3H), 3.73-3.64 (m, 2H), 3.22 (ddd, J = 15.2 Hz, 7.2 Hz, 3.6 Hz, 1H), 3.00-2.94 (m, 2H), 2.82 (dd, J = 16.0 Hz, 5.2 Hz, 2.68- 2.63 (m, 1H), 1.90-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 203.26, 159.20, 145.91, 130.24, 113.04, 102.10, 100.95, 59.19, 56.80, 55.19, 48.52, 29.02 27.63, 27.16, 25.62, 25.30, 24.86, 22.69; EI-MS: m/z 288.1 [M+H]+.

(12bR,13R)-6,7,8,12b,13,14-Hexahydrobenzo[3,4]azepino[ 1,2-a]quinoline-13-carbaldehyde (2k): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 9.64 (d, J = 1.6 HZ, 1H), 7.18-7.02 (m, 6H), 6.67-6.58 (m, 2H), 5.05 (d, J = 6.4 Hz, 1H), 2.99-2.90 (m, 2H), 2.65 (dt, J = 14 Hz, 4.8 Hz, 1H), 2.27-2.19 (m, 1H), 1.68-1.61 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 203.02, 143.42, 139.63, 139.28, 130.80, 129.28, 127.86, 127.65, 127.16, 126.54, 119.34, 116.07, 110.66, 63.26, 49.49, 46.33, 31.88, 26.72, 24.73; EI-MS: m/z 278.1 [M+H]+.

(11bR,12R)-7,11b,12,13-Tetrahydro-6H-isoquinolino[2,1- a]quinoline-12-carbaldehyde (2l): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 9.39 (s, 1H), 7.33-7.28 (m, 2H), 7.24-7.19 (m, 2H), 7.14-7.10 (m, 2H), 6.85-6.83 (m, 1H), 6.79 (td, J = 7.2 Hz, 0.8 Hz, 1H), 4.66-4.67 (m, 1H), 4.01- 3.97 (m, 1H), 3.41 (d, J = 16.8 Hz, 1H), 3.29 (dt, J = 7.2 Hz, 1.6 Hz, 1H), 3.17 (dd, J = 16.4 Hz, 6.8 Hz, 1H), 3.08-3.04 (m, 1H), 3.02-2.99 (m, 1H), 2.93-2.89 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 202.02, 146.38, 135.36, 134.98, 129.86, 128.81, 126.95, 126.83, 126.24, 121.32, 118.87, 112.11 (one aromatic carbon missing), 57.61, 51.21, 42.06, 29.89, 27.67; EI-MS: m/z 264.1 [M+H]+.

References

  1. (a) Yu, J.-Q.; Shi, Z.-J. C-H Activation; Springer: Berlin, Germany, 2010.
  2. (b) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. https://doi.org/10.1039/c1cs15083a
  3. (c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. https://doi.org/10.1039/c1cs15082k
  4. (d) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. https://doi.org/10.1021/ar300014f
  5. (e) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. https://doi.org/10.1021/ar200185g
  6. (a) Wasa, M.; Chan, K. S. L.; Zhang, X.-G.; He, J.; Miura, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 18570. https://doi.org/10.1021/ja309325e
  7. (b) Tran, L. D.; Daugulis, O. Angew. Chem., Int. Ed. 2012, 51, 5188. https://doi.org/10.1002/anie.201200731
  8. (c) Leskinen, M. V.; Yip, K.-T.; Valkonen, A.; Pihko, P. M. J. Am. Chem. Soc. 2012, 134, 5750. https://doi.org/10.1021/ja300684r
  9. (d) Aspin, S.; Goutierre, A.-S.; Larini, P.; Jazzar, R.; Baudoin, O.; Angew. Chem., Int. Ed. 2012, 51, 10808. https://doi.org/10.1002/anie.201206237
  10. (e) Ton, T. M. U.; Tejo, C.; Tiong, D. L. Y.; Chan, P. W. H. J. Am. Chem. Soc. 2012, 134, 7344. https://doi.org/10.1021/ja301415k
  11. (f) Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science 2013, 339, 1593. https://doi.org/10.1126/science.1232993
  12. Xiao, J. ChemCatChem 2012, 4, 612. https://doi.org/10.1002/cctc.201100488
  13. (a) Zhang, S.-L.; Xie, H.-X.; Zhu, J.; Li, H.; Zhang, X.-S.; Li, J.; Wang, W. Nat. Commun. 2011, 2, 211. https://doi.org/10.1038/ncomms1214
  14. (b) Zhu, J.; Yu, S.-T.; Lu, W.-C.; Deng, J.; Li, J.; Wang, W. Tetrahedron Lett. 2012, 53, 1207. https://doi.org/10.1016/j.tetlet.2011.12.131
  15. (c) Xie, H.-X.; Zhang, S.-L.; Li, H.; Zhang, X.-S.; Zhao, S.-H.; Xu, Z.; Song, X.-X.; Yu, X.-H.; Wang, W. Chem. Eur. J. 2012, 18, 2230. https://doi.org/10.1002/chem.201103325
  16. Hayashi, Y.; Itoh, T.; Ishikawa, H. Angew. Chem., Int. Ed. 2011, 50, 3920. https://doi.org/10.1002/anie.201006885
  17. Zeng, X.; Ni, Q.; Raabe, G.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 2977. https://doi.org/10.1002/anie.201209581
  18. (a) McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402. https://doi.org/10.1021/ja806068h
  19. (b) Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. https://doi.org/10.1021/ja906480w
  20. (c) Haibach, M.; Deb, I.; De, C. K.; Seidel, D. J. Am. Chem. Soc. 2011, 133, 2100. https://doi.org/10.1021/ja110713k
  21. (d) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424. https://doi.org/10.1021/ja110520p
  22. (e) Mori, K.; Kawasaki, T.; Akiyama, T. Org. Lett. 2012, 14, 1436. https://doi.org/10.1021/ol300180w
  23. (f) Vadola, P. A.; Carrera, I.; Sames, D. J. Org. Chem. 2012, 77, 6689. https://doi.org/10.1021/jo300635m
  24. (a) Quintela, J. M. Recent Res. Dev. Org. Chem. 2003, 7, 259.
  25. (b) Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2625.
  26. (c) Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 1374. https://doi.org/10.3762/bjoc.8.159
  27. (a) Shikanai, D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166. https://doi.org/10.1021/ja809826a
  28. (b) Mahoney, S. J.; Moon, D. T.; Hollinger, J.; Fillion, E. Tetrahedron Lett. 2009, 50, 4706. https://doi.org/10.1016/j.tetlet.2009.06.007
  29. (c) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524. https://doi.org/10.1246/cl.2009.524
  30. (d) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419. https://doi.org/10.1021/jo802325x
  31. (e) Murarka, S.; Zhang, C.; Konieczynska, M. D. Org. Lett. 2009, 11, 129. https://doi.org/10.1021/ol802519r
  32. (f) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12, 1732. https://doi.org/10.1021/ol100316k
  33. (a) Barton, D. H.; Nakanishi, K.; Meth-Cohn, O. Comprehensive Natural Products Chemistry; Elsevier: Oxford, 1999; Vol. 1-9.
  34. (b) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031. https://doi.org/10.1016/S0040-4020(96)00911-8
  35. (c) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357. https://doi.org/10.1021/ar700094b
  36. (a) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070. https://doi.org/10.1021/ja064676r
  37. (b) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. https://doi.org/10.1002/anie.200600191
  38. (c) Guo, Q. S.; Du, D. M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759. https://doi.org/10.1002/anie.200703925
  39. (d) Wang, X. B.; Zhou, Y. G. J. Org. Chem. 2008, 73, 5640. https://doi.org/10.1021/jo800779r
  40. (e) Glushkov, V. A.; Tolstikov, A. G. Russ. Chem. Rev. 2008, 77, 137. https://doi.org/10.1070/RC2008v077n02ABEH003749
  41. (f) O'Byrne, A.; Evans, P. Tetrahedron 2008, 64, 8067. https://doi.org/10.1016/j.tet.2008.06.073
  42. (g) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721. https://doi.org/10.1016/j.tet.2008.12.059
  43. (h) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. P. J. Am. Chem. Soc. 2009, 131, 4598. https://doi.org/10.1021/ja900806q
  44. (i) Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. 2010, 46, 327. https://doi.org/10.1039/b921113f
  45. (a) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 13226. https://doi.org/10.1021/ja905213f
  46. (b) Zhou, G.; Liu, F.; Zhang, J. Chem. Eur. J. 2011, 17, 3101. https://doi.org/10.1002/chem.201100019
  47. (c) Kwon, Y. K.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 1773. https://doi.org/10.5012/bkcs.2011.32.5.1773
  48. (d) Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166. https://doi.org/10.1021/ja2014955
  49. (e) Chen, L.; Zhang, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 8891. https://doi.org/10.1002/chem.201201532
  50. (f) Zhang, L.; Chen. L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Asian. J. 2012, 7, 2569. https://doi.org/10.1002/asia.201200674
  51. (a) Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
  52. (b) Kim, D. Y.; Huh, S. C.; Kim, M. H. Tetrahedron Lett. 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
  53. (c) Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. https://doi.org/10.1002/adsc.200900268
  54. (d) Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. https://doi.org/10.1021/jo900880t
  55. (e) Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. https://doi.org/10.1016/j.tetlet.2009.06.056
  56. (f) Oh, Y. Y.; Kim, S, M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. https://doi.org/10.1016/j.tetlet.2009.06.003
  57. (g) Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. https://doi.org/10.1016/j.jfluchem.2009.06.002
  58. (h) Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. https://doi.org/10.1016/j.tet.2009.05.037
  59. (i) Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860.
  60. (j) Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906. https://doi.org/10.1016/j.tetlet.2010.03.105
  61. (k) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. https://doi.org/10.1016/j.tetlet.2011.02.087
  62. (l) Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420.
  63. (m) Kang, S. H.; Kwon, B. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 3247. https://doi.org/10.1016/j.tetlet.2011.04.084
  64. (n) Kang, Y. K.; Suh, K. H.; Kim, D. Y. Synlett 2011, 1125.
  65. (o) Lee, H. J.; Kang, S. H.; Kim, D. Y. Synlett 2011, 1559.
  66. (p) Lee, H. J.; Woo, S. B.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3374. https://doi.org/10.1016/j.tetlet.2012.04.095
  67. (q) Lee, H. J.; Kim, D. Y. Synlett 2012, 1629.
  68. (r) Lee, H. J.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6984. https://doi.org/10.1016/j.tetlet.2012.10.051
  69. (s) Lee, H. J.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3437. https://doi.org/10.1016/j.tetlet.2012.04.072
  70. (t) Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6569. https://doi.org/10.1016/j.tetlet.2012.09.100
  71. (u) Lee, H. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2012, 33, 3171. https://doi.org/10.5012/bkcs.2012.33.10.3171
  72. (v) Woo, S. B.; Suh, C. W.; Koh, K. O.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3359. https://doi.org/10.1016/j.tetlet.2013.04.054
  73. (w) Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1619. https://doi.org/10.5012/bkcs.2013.34.6.1619
  74. (x) Kang, Y. K.; Lee, H. J.; Moon, H. W.; Kim, D. Y. RSC Advances 2013, 3, 1332. https://doi.org/10.1039/c2ra21945j
  75. (y) Suh, C. W.; Han, T. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1623. https://doi.org/10.5012/bkcs.2013.34.6.1623
  76. (z) Suh, C. W.; Chang, C. W.; Choi, K. W.; Lim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3651. https://doi.org/10.1016/j.tetlet.2013.04.132
  77. Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. https://doi.org/10.1021/ja103786c

Cited by

  1. Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences vol.16, pp.20, 2014, https://doi.org/10.1021/ol502575f
  2. Thiourea-catalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10014
  3. Synthesis of Tetrahydroquinoline Derivatives via Oxidation and 1,5-Hydride Transfer/Cyclization Cascade vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10044
  4. Diastereo- and Enantioselective Conjugate Addition of α-Substituted Cyanoacetates to Maleimides Catalyzed by Binaphthyl-based Thiourea vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10439
  5. )-H Bond Activation vol.16, pp.3, 2016, https://doi.org/10.1002/tcr.201600003
  6. Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences vol.19, pp.6, 2017, https://doi.org/10.1021/acs.orglett.7b00184
  7. -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11307
  8. -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.39, pp.1, 2018, https://doi.org/10.1002/bkcs.11354
  9. )-Ones with Aryldiazo Sulfones vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11530
  10. ChemInform Abstract: Organocatalytic Oxidative Enamine Catalysis and 1,5‐Hydride Transfer/Cyclization: Synthesis of Tetrahydroquinoline Derivatives. vol.45, pp.18, 2013, https://doi.org/10.1002/chin.201418166
  11. Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1-(1-Arylvinyl)cyclobutanol Derivatives vol.18, pp.18, 2013, https://doi.org/10.1021/acs.orglett.6b02201
  12. Visible Light Photoredox‐Catalyzed Arylation of Quinoxalin‐2(1 H )‐ones with Aryldiazonium Salts vol.3, pp.21, 2013, https://doi.org/10.1002/slct.201801431
  13. Progress in the Chemistry of Tetrahydroquinolines vol.119, pp.8, 2013, https://doi.org/10.1021/acs.chemrev.8b00567
  14. Copper‐promoted Synthesis of β‐Selenylated Cyclopentanones via Selenylation and 1,2‐Alkyl Migration Sequences of Alkenyl Cyclobutanols vol.41, pp.3, 2020, https://doi.org/10.1002/bkcs.11967