Experimental
General Procedure for the Synthesis of Tetrahydroquinoline Derivatives 2: To a stirred solution of 3-(o-(dialkylamino) aryl)propanals 1 (0.3 mmol) in CH2Cl2 (1.0 mL) was added DDQ (68.1 mg, 0.3 mmol), racemic diarylprolinol silylether catalyst III (35.9 mg, 0.06 mmol), and DNBS (14.9 mg, 0.06 mmol). The mixture was refluxed for 0.5-7 d, diluted with saturated NaHCO3 solution (10 mL) and extracted with ethyl acetate (2 × 15 mL). The combined organic layers were dried over MgSO4, filtered, concentrated, and purified by flash chromatography (EtOAc/hexane = 1:10) to afford tetrahydroquinoline derivatives 2.
6R,6aS)-5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2- a]quinoline-6-carbaldehyde (2a): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.83 (d, J = 0.8 Hz, 1H), 7.14- 7.07 (m, 2H), 6.80-6.77 (m, 1H), 6.70 (td, J = 7.2 Hz, 1.2 Hz, 1H), 3.76 (dt, J = 10.8 Hz, 2.4 Hz, 1H), 3.67 (ddd, J = 14.8 Hz, 8.0 Hz, 3.6 Hz, 1H), 3.22 (ddd, J = 14.8 Hz, 6.8 Hz, 3.6 Hz, 1H), 3.05-2.98 (m, 1H), 2.87 (dd, J = 16.8 Hz, 5.6 Hz, 1H), 2.70-2.65 (m, 1H), 1.84-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 203.21, 144.97, 129.77, 127.35, 120.33, 117.04, 115.24, 58.88, 56.79, 48.00, 28.87, 27.62, 27.25, 25.44, 25.09, 24.74, 23.33; EI-MS: m/z 258.1 [M+H]+; ESIHRMS: m/z calcd for C17H24NO [M+H]+: 258.1861; found 258.1858.
(6R,6aR)-6,6a,7,8,9,10,11,12-Octahydro-5H-azocino[1,2- a]quinoline-6-carbaldehyde (2b): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.50 (d, J = 0.4 Hz, 1H), 7.08- 7.03 (m, 2H, 6.61-6.54 (m, 2H), 3.84-3.79 (m, 2H), 3.24- 3.21 (m, 1H), 3.20-3.06 (m, 2H), 2.54-2.51 (m, 1H), 2.01- 1.32 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 203.32, 143.98, 129.52, 127.54, 117.37, 115.53, 111.33, 55.45, 53.15, 48.65, 33.90, 27.82, 26.91, 26.26, 26.09, 24.17; EI-MS: m/z 244.1 [M+H]+; ESI-HRMS: m/z calcd for C16H22NO [M+H]+: 244.1701; found 244.1697.
(6R,6aS)-5,6,6a,7,8,9,10,11-Octahydroazepino[1,2-a]quinoline- 6-carbaldehyde (2c): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.55 (s, 1H), 7.06-7.01 (m, 2H), 6.52- 6.54 (m, 1H), 6.40-6.48 (m, 1H), 3.85 (dd, J = 6.0 Hz, 3.0 Hz, 1H), 3.82-3.79 (m, 1H), 3.22-3.09 (m, 2H), 3.02 (dd, J = 8.0 Hz, 6.5 Hz, 1 H), 2.54-2.52 (m, 1H), 1.81-1.95 (m, 1H), 1.67-1.57 (m, 6H), 1.37-1.34 (m, 1H) ; 13C NMR (100 MHz, CDCl3) δ 203.17, 144.90, 129.50, 127.53, 117.15, 115.67, 110.39, 58.26, 49.58, 47.95, 35.02, 26.63, 26.13, 25.94, 23.80; EI-MS: m/z 230.1 [M+H]+; ESI-HRMS: m/z calcd for C15H20NO [M+H]+: 230.1545; found 230.1541.
(4aS,5R)-2,3,4,4a,5,6-Hexahydro-1H-pyrido[1,2-a]quinoline- 5-carbaldehyde (2d): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.63 (d, J = 1.6 Hz, 1H), 7.10 (td, J = 8.4 Hz, 1.6 Hz, 1H), 7.03-7.01 (m, 1H), 6.78-6.76 (m, 1H), 6.67 (td, J = 7.2 Hz, 0.8 Hz, 1H), 3.95-3.91 (m, 1H), 3.45 (ddd, J = 10.8 Hz, 5.2 Hz, 2.0 Hz, 1H), 2.99 (dd, J = 15.2 Hz, 6.4 Hz, 1H), 2.90-2.84 (m, 2H), 2.63-2.58 (m, 1H), 1.90- 1.50 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 202.72, 145.73, 128.89, 127.65, 122.10, 117.62, 112.60, 56.53, 52.01, 48.39, 31.26, 25.99, 24.98, 24.06; EI-MS: m/z 216.1 [M+H]+.
(3aS,4R)-1,2,3,3a,4,5-Hexahydropyrrolo[1,2-a]quinoline- 4-carbaldehyde (2e): Major diastereoisomer; 1H NMR (400 MHz, CDCl3) δ 9.91 (d, J = 2.0 Hz, 1H), 7.11-7.08 (m, 1H), 7.35 (d, J = 7.0 Hz, 1H), 6.60-6.57 (m, 1H), 6.44 (d, J = 8.0 Hz, 1H) 3.49 (ddd, J = 10.4 Hz, 10.1 Hz, 4.9 Hz, 1H), 3.38 (ddd, J = 11.1 Hz, 8.9 Hz, 2.1 Hz, 1H), 3.22-3.17 (m, 1H), 2.93-2.91 (m, 2H), 2.50-2.41 (m, 1H), 2.32-2.28 (m, 1H), 2.13-2.10 (m, 1H), 1.97-1.95 (m, 1H), 1.58-1.54 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 202.99, 143.89, 128.70, 127.76, 119.06, 115.48, 110.45, 57.75, 50.35, 46.64, 31.62, 28.59, 24.02; EI-MS: m/z 202.1 [M+H]+; ESI-HRMS: m/z calcd for C13H16NO [M+H]+: 202.1232; found 202.1238.
(6R,6aS)-3-Bromo-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2f): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.81 (d, J = 0.8 Hz, 1H), 7.19-7.17 (m, 2H), 6.65-6.62 (m, 1H), 3.76 (dt, J = 10.4 Hz, 2.8 Hz, 1H), 3.61 (ddd, J = 14.8 Hz, 7.6 Hz, 3.2 Hz, 1H), 3.21 (ddd, J = 14.8 Hz, 6.8 Hz, 3.2 Hz, 1H), 3.01 (dd, J = 16.8 Hz, 13.6 Hz, 1H), 2.82 (dd, J = 17.2 Hz, 5.6 Hz, 1H), 2.67-2.61 (m, 1H), 1.90-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 202.46, 143.95, 132.07, 130.11, 122.40, 116.58, 108.80, 58.92, 56.75, 47.82, 28.81, 27.46, 27.10, 25.51, 25.16, 24.74, 23.15; EI-MS: m/z 336.0 [M+H]+.
(6R,6aS)-3-Fluoro-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2g): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.82 (d, J = 0.4 Hz, 1H), 6.86-6.77 (m, 2H), 6.71 (dd, J = 8.8 Hz, 4.8 Hz, 1H), 3.75 (dt, J = 11.2 Hz, 2.8 Hz, 1H), 3.54 (ddd, J = 14.8 Hz, 8.4 Hz, 3.6 Hz, 1H), 3.21 (ddd, J = 14.8 Hz, 6.4 Hz, 3.2 Hz, 1H), 3.03 (dd, J = 16.4 Hz, 13.6 Hz, 1H), 2.82 (dd, J = 16.8 Hz, 5.2 Hz, 1H), 2.70-2.64 (m, 1H), 1.90-1.25 (m, 11H), 1.15-1.05 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 202.77, 155.38 (d, J = 234.7 Hz), 141.38, 121.78 (d, J = 7.1 Hz), 116.55 (d, J = 8.4 Hz), 115.62 (d, J = 21.7 Hz), 114.08 (d, J = 22.0 Hz), 58.20, 57.21, 47.47, 28.52, 27.53, 27.44, 24.89, 24.55, 24.31, 23.38; EI-MS: m/z 276.1 [M+H]+.
(6R,6aS)-3-(Trifluoromethyl)-5,6,6a,7,8,9,10,11,12,13- decahydroazonino[1,2-a]quinoline-6-carbaldehyde (2h): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.50 (s, 1H), 7.30-7.28 (m, 2H), 6.66-6.64 (m, 1H), 3.92-3.88 (m, 1H), 3.72 (ddd, J = 12.4 Hz, 6.4 Hz, 3.2 Hz, 1H), 3.27 (ddd, J = 15.2 Hz, 7.6 Hz, 3.2 Hz, 1H), 3.18-3.14 (m, 1H), 3.12- 3.10 (m, 1H), 2.61 (dt, J = 6.4 Hz, 2.4 Hz, 1H), 1.90-1.30 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 202.31, 147.19, 126.57 (q, J = 3.6 Hz), 124.60 (q, J = 4.1 Hz), 123.81 (q, J = 265.2), 117.19, 116.99 (q, J = 32.2 Hz), 110.71, 59.84, 56.65, 48.75, 33.22, 30.92, 27.69, 26.57, 26.39, 25.35, 23.75; EI-MS: m/z 326.1 [M+H]+.
(6R,6aS)-2-Chloro-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2i): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.81 (d, J = 0.4 Hz, 1H), 6.98-6.96 (m, 1H), 6.72-6.70 (m, 1H), 6.64 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 3.77 (dt, J = 10.8 Hz, 2.4 Hz, 1H), 3.64 (ddd, J = 15.2 Hz, 7.2 Hz, 3.6 Hz, 1H), 3.22 (ddd, J = 14.8 Hz, 7.2 Hz, 3.6 Hz, 1H), 3.02-2.94 (m, 1H), 2.82 (dd, J = 17.2 Hz, 5.6 Hz, 1H), 2.64 (ddd, J = 13.6 Hz, 5.2 Hz, 4 Hz, 1H), 1.90-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 202.53, 145.92, 132.75, 130.66, 118.62, 116.85, 114.40, 58.98, 56.75, 48.11, 29.06, 27.40, 17.10, 25.60, 25.24, 24.77, 22.87; EI-MS: m/z 292.1 [M+H]+.
(6R,6aS)-2-Methoxy-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[ 1,2-a]quinoline-6-carbaldehyde (2j): Major diastereomer; 1H NMR (400 MHz, CDCl3) δ 9.81 (d, J = 0.8 Hz, 1H), 7.00-6.98 (m, 1H), 6.31-6.29 (m, 2H), 3.78 (s, 3H), 3.73-3.64 (m, 2H), 3.22 (ddd, J = 15.2 Hz, 7.2 Hz, 3.6 Hz, 1H), 3.00-2.94 (m, 2H), 2.82 (dd, J = 16.0 Hz, 5.2 Hz, 2.68- 2.63 (m, 1H), 1.90-1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 203.26, 159.20, 145.91, 130.24, 113.04, 102.10, 100.95, 59.19, 56.80, 55.19, 48.52, 29.02 27.63, 27.16, 25.62, 25.30, 24.86, 22.69; EI-MS: m/z 288.1 [M+H]+.
(12bR,13R)-6,7,8,12b,13,14-Hexahydrobenzo[3,4]azepino[ 1,2-a]quinoline-13-carbaldehyde (2k): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 9.64 (d, J = 1.6 HZ, 1H), 7.18-7.02 (m, 6H), 6.67-6.58 (m, 2H), 5.05 (d, J = 6.4 Hz, 1H), 2.99-2.90 (m, 2H), 2.65 (dt, J = 14 Hz, 4.8 Hz, 1H), 2.27-2.19 (m, 1H), 1.68-1.61 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 203.02, 143.42, 139.63, 139.28, 130.80, 129.28, 127.86, 127.65, 127.16, 126.54, 119.34, 116.07, 110.66, 63.26, 49.49, 46.33, 31.88, 26.72, 24.73; EI-MS: m/z 278.1 [M+H]+.
(11bR,12R)-7,11b,12,13-Tetrahydro-6H-isoquinolino[2,1- a]quinoline-12-carbaldehyde (2l): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 9.39 (s, 1H), 7.33-7.28 (m, 2H), 7.24-7.19 (m, 2H), 7.14-7.10 (m, 2H), 6.85-6.83 (m, 1H), 6.79 (td, J = 7.2 Hz, 0.8 Hz, 1H), 4.66-4.67 (m, 1H), 4.01- 3.97 (m, 1H), 3.41 (d, J = 16.8 Hz, 1H), 3.29 (dt, J = 7.2 Hz, 1.6 Hz, 1H), 3.17 (dd, J = 16.4 Hz, 6.8 Hz, 1H), 3.08-3.04 (m, 1H), 3.02-2.99 (m, 1H), 2.93-2.89 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 202.02, 146.38, 135.36, 134.98, 129.86, 128.81, 126.95, 126.83, 126.24, 121.32, 118.87, 112.11 (one aromatic carbon missing), 57.61, 51.21, 42.06, 29.89, 27.67; EI-MS: m/z 264.1 [M+H]+.
References
- (a) Yu, J.-Q.; Shi, Z.-J. C-H Activation; Springer: Berlin, Germany, 2010.
- (b) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. https://doi.org/10.1039/c1cs15083a
- (c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. https://doi.org/10.1039/c1cs15082k
- (d) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. https://doi.org/10.1021/ar300014f
- (e) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. https://doi.org/10.1021/ar200185g
- (a) Wasa, M.; Chan, K. S. L.; Zhang, X.-G.; He, J.; Miura, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 18570. https://doi.org/10.1021/ja309325e
- (b) Tran, L. D.; Daugulis, O. Angew. Chem., Int. Ed. 2012, 51, 5188. https://doi.org/10.1002/anie.201200731
- (c) Leskinen, M. V.; Yip, K.-T.; Valkonen, A.; Pihko, P. M. J. Am. Chem. Soc. 2012, 134, 5750. https://doi.org/10.1021/ja300684r
- (d) Aspin, S.; Goutierre, A.-S.; Larini, P.; Jazzar, R.; Baudoin, O.; Angew. Chem., Int. Ed. 2012, 51, 10808. https://doi.org/10.1002/anie.201206237
- (e) Ton, T. M. U.; Tejo, C.; Tiong, D. L. Y.; Chan, P. W. H. J. Am. Chem. Soc. 2012, 134, 7344. https://doi.org/10.1021/ja301415k
- (f) Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science 2013, 339, 1593. https://doi.org/10.1126/science.1232993
- Xiao, J. ChemCatChem 2012, 4, 612. https://doi.org/10.1002/cctc.201100488
- (a) Zhang, S.-L.; Xie, H.-X.; Zhu, J.; Li, H.; Zhang, X.-S.; Li, J.; Wang, W. Nat. Commun. 2011, 2, 211. https://doi.org/10.1038/ncomms1214
- (b) Zhu, J.; Yu, S.-T.; Lu, W.-C.; Deng, J.; Li, J.; Wang, W. Tetrahedron Lett. 2012, 53, 1207. https://doi.org/10.1016/j.tetlet.2011.12.131
- (c) Xie, H.-X.; Zhang, S.-L.; Li, H.; Zhang, X.-S.; Zhao, S.-H.; Xu, Z.; Song, X.-X.; Yu, X.-H.; Wang, W. Chem. Eur. J. 2012, 18, 2230. https://doi.org/10.1002/chem.201103325
- Hayashi, Y.; Itoh, T.; Ishikawa, H. Angew. Chem., Int. Ed. 2011, 50, 3920. https://doi.org/10.1002/anie.201006885
- Zeng, X.; Ni, Q.; Raabe, G.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 2977. https://doi.org/10.1002/anie.201209581
- (a) McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402. https://doi.org/10.1021/ja806068h
- (b) Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. https://doi.org/10.1021/ja906480w
- (c) Haibach, M.; Deb, I.; De, C. K.; Seidel, D. J. Am. Chem. Soc. 2011, 133, 2100. https://doi.org/10.1021/ja110713k
- (d) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424. https://doi.org/10.1021/ja110520p
- (e) Mori, K.; Kawasaki, T.; Akiyama, T. Org. Lett. 2012, 14, 1436. https://doi.org/10.1021/ol300180w
- (f) Vadola, P. A.; Carrera, I.; Sames, D. J. Org. Chem. 2012, 77, 6689. https://doi.org/10.1021/jo300635m
- (a) Quintela, J. M. Recent Res. Dev. Org. Chem. 2003, 7, 259.
- (b) Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2625.
- (c) Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 1374. https://doi.org/10.3762/bjoc.8.159
- (a) Shikanai, D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166. https://doi.org/10.1021/ja809826a
- (b) Mahoney, S. J.; Moon, D. T.; Hollinger, J.; Fillion, E. Tetrahedron Lett. 2009, 50, 4706. https://doi.org/10.1016/j.tetlet.2009.06.007
- (c) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524. https://doi.org/10.1246/cl.2009.524
- (d) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419. https://doi.org/10.1021/jo802325x
- (e) Murarka, S.; Zhang, C.; Konieczynska, M. D. Org. Lett. 2009, 11, 129. https://doi.org/10.1021/ol802519r
- (f) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12, 1732. https://doi.org/10.1021/ol100316k
- (a) Barton, D. H.; Nakanishi, K.; Meth-Cohn, O. Comprehensive Natural Products Chemistry; Elsevier: Oxford, 1999; Vol. 1-9.
- (b) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031. https://doi.org/10.1016/S0040-4020(96)00911-8
- (c) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357. https://doi.org/10.1021/ar700094b
- (a) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070. https://doi.org/10.1021/ja064676r
- (b) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. https://doi.org/10.1002/anie.200600191
- (c) Guo, Q. S.; Du, D. M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759. https://doi.org/10.1002/anie.200703925
- (d) Wang, X. B.; Zhou, Y. G. J. Org. Chem. 2008, 73, 5640. https://doi.org/10.1021/jo800779r
- (e) Glushkov, V. A.; Tolstikov, A. G. Russ. Chem. Rev. 2008, 77, 137. https://doi.org/10.1070/RC2008v077n02ABEH003749
- (f) O'Byrne, A.; Evans, P. Tetrahedron 2008, 64, 8067. https://doi.org/10.1016/j.tet.2008.06.073
- (g) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721. https://doi.org/10.1016/j.tet.2008.12.059
- (h) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. P. J. Am. Chem. Soc. 2009, 131, 4598. https://doi.org/10.1021/ja900806q
- (i) Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. 2010, 46, 327. https://doi.org/10.1039/b921113f
- (a) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 13226. https://doi.org/10.1021/ja905213f
- (b) Zhou, G.; Liu, F.; Zhang, J. Chem. Eur. J. 2011, 17, 3101. https://doi.org/10.1002/chem.201100019
- (c) Kwon, Y. K.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 1773. https://doi.org/10.5012/bkcs.2011.32.5.1773
- (d) Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166. https://doi.org/10.1021/ja2014955
- (e) Chen, L.; Zhang, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 8891. https://doi.org/10.1002/chem.201201532
- (f) Zhang, L.; Chen. L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Asian. J. 2012, 7, 2569. https://doi.org/10.1002/asia.201200674
- (a) Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
- (b) Kim, D. Y.; Huh, S. C.; Kim, M. H. Tetrahedron Lett. 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
- (c) Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. https://doi.org/10.1002/adsc.200900268
- (d) Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. https://doi.org/10.1021/jo900880t
- (e) Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. https://doi.org/10.1016/j.tetlet.2009.06.056
- (f) Oh, Y. Y.; Kim, S, M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. https://doi.org/10.1016/j.tetlet.2009.06.003
- (g) Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. https://doi.org/10.1016/j.jfluchem.2009.06.002
- (h) Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. https://doi.org/10.1016/j.tet.2009.05.037
- (i) Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860.
- (j) Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906. https://doi.org/10.1016/j.tetlet.2010.03.105
- (k) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. https://doi.org/10.1016/j.tetlet.2011.02.087
- (l) Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420.
- (m) Kang, S. H.; Kwon, B. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 3247. https://doi.org/10.1016/j.tetlet.2011.04.084
- (n) Kang, Y. K.; Suh, K. H.; Kim, D. Y. Synlett 2011, 1125.
- (o) Lee, H. J.; Kang, S. H.; Kim, D. Y. Synlett 2011, 1559.
- (p) Lee, H. J.; Woo, S. B.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3374. https://doi.org/10.1016/j.tetlet.2012.04.095
- (q) Lee, H. J.; Kim, D. Y. Synlett 2012, 1629.
- (r) Lee, H. J.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6984. https://doi.org/10.1016/j.tetlet.2012.10.051
- (s) Lee, H. J.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3437. https://doi.org/10.1016/j.tetlet.2012.04.072
- (t) Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6569. https://doi.org/10.1016/j.tetlet.2012.09.100
- (u) Lee, H. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2012, 33, 3171. https://doi.org/10.5012/bkcs.2012.33.10.3171
- (v) Woo, S. B.; Suh, C. W.; Koh, K. O.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3359. https://doi.org/10.1016/j.tetlet.2013.04.054
- (w) Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1619. https://doi.org/10.5012/bkcs.2013.34.6.1619
- (x) Kang, Y. K.; Lee, H. J.; Moon, H. W.; Kim, D. Y. RSC Advances 2013, 3, 1332. https://doi.org/10.1039/c2ra21945j
- (y) Suh, C. W.; Han, T. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1623. https://doi.org/10.5012/bkcs.2013.34.6.1623
- (z) Suh, C. W.; Chang, C. W.; Choi, K. W.; Lim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3651. https://doi.org/10.1016/j.tetlet.2013.04.132
- Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. https://doi.org/10.1021/ja103786c
Cited by
- Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences vol.16, pp.20, 2014, https://doi.org/10.1021/ol502575f
- Thiourea-catalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10014
- Synthesis of Tetrahydroquinoline Derivatives via Oxidation and 1,5-Hydride Transfer/Cyclization Cascade vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10044
- Diastereo- and Enantioselective Conjugate Addition of α-Substituted Cyanoacetates to Maleimides Catalyzed by Binaphthyl-based Thiourea vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10439
- )-H Bond Activation vol.16, pp.3, 2016, https://doi.org/10.1002/tcr.201600003
- Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences vol.19, pp.6, 2017, https://doi.org/10.1021/acs.orglett.7b00184
- -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11307
- -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.39, pp.1, 2018, https://doi.org/10.1002/bkcs.11354
- )-Ones with Aryldiazo Sulfones vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11530
- ChemInform Abstract: Organocatalytic Oxidative Enamine Catalysis and 1,5‐Hydride Transfer/Cyclization: Synthesis of Tetrahydroquinoline Derivatives. vol.45, pp.18, 2013, https://doi.org/10.1002/chin.201418166
- Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1-(1-Arylvinyl)cyclobutanol Derivatives vol.18, pp.18, 2013, https://doi.org/10.1021/acs.orglett.6b02201
- Visible Light Photoredox‐Catalyzed Arylation of Quinoxalin‐2(1 H )‐ones with Aryldiazonium Salts vol.3, pp.21, 2013, https://doi.org/10.1002/slct.201801431
- Progress in the Chemistry of Tetrahydroquinolines vol.119, pp.8, 2013, https://doi.org/10.1021/acs.chemrev.8b00567
- Copper‐promoted Synthesis of β‐Selenylated Cyclopentanones via Selenylation and 1,2‐Alkyl Migration Sequences of Alkenyl Cyclobutanols vol.41, pp.3, 2020, https://doi.org/10.1002/bkcs.11967