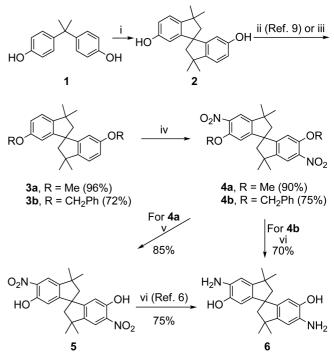
Practical Multigram Synthesis of 3,3,3',3'-Tetramethyl-1,1'-spirobisindane-5,5'-diamino-6,6'-diol

Jee Soo Choi, Sang-Hyun Ahn, Kang Hyuck Lee,[†] Young Moo Lee,^{†,*} and Kee-Jung Lee^{*}


Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea. *E-mail: leekj@hanyang.ac.kr †WCU Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea. *E-mail: ymlee@hanyang.ac.kr Received August 1, 2013, Accepted September 20, 2013

Key Words : PIMs, Gas separation membranes, Spirobisindane derivatives, Multigram synthesis, 3,3,3',3'-Tetramethyl-1,1-spirobisindane-5,5'-diamino-6,6'-diol

Polymers of intrinsic microporosity (PIMs)¹⁻⁴ containing 1,1'-spirobisindane building blocks as subunits are very attractive for the construction of gas separation membranes.⁵ PIMs possess a fused-ring, ladder-type structure interrupted by sites of contortion. These structural features prevent the polymer from packing space efficiently in the solid state, leading to its high free volume and microporosity. Recently, thermally rearranged polybenzoxazole polymers⁶ and hydroxyl-functionalized polyimides⁷ with a spirobisindane moiety have been developed. One of the key monomers is 3,3,3',3'-tetramethyl-1,1'-spirobisindane-5,5'-diamino-6,6'diol (6) as shown in Scheme 1. A few known synthetic methods of 6 are a direct nitration of 3,3,3',3'-tetramethyl-1,1'-spirobisindane-6,6'-diol (2) with nitric acid followed by reduction using HCO2NH4/Pd-C, NH2NH2·H2O/Pd-C and SnCl₂/conc·HCl.⁶⁻⁸ The critical drawback of this method is that several nitro-substituted regioisomers are produced. So this method requires tedious chromatographic isolation and suffers from a low yield. Rajamohanan and co-workers have reported that nitration of the O-methylated spirobisindane compound 3a with HNO₃-H₂SO₄ in acetic acid afforded the 5-nitro substituted spirobisindane 4a in excellent yield.⁹ They demonstrated the utility of inherently rigid building blocks such as 1,1'-spirobisindane for generating conformationally ordered synthetic oligomers after conversion of nitro group into amino group followed by acylation of several acid chlorides.

At first, we carried out demethylation of known **4a** with boron tribromide in dichloromethane at 0-5 °C and the spirobisindanediol **5** was produced in a 85% yield. Reduction of **5** with Pd-C and hydrazine hydrate in refluxing ethanol resulted in 3,3,3',3'-tetramethyl-1,1'-spirobisindane-5,5'-diamino-6,6'-diol (**6**) in 75% yield.¹⁰ But, the above-described method requires engagement of BBr₃, which makes this method expensive and environmentally less friendly. From the economic and ecological point of view, it would be great if nitration is occurred selectively and both reduction and dealkylation are proceeded simultaneously. Herein, we describe a facile and multigram scale synthesis of **6** by the *O*-benzylation, nitration and concomitant reduction and debenzylation from readily available spiro-bisindanediol **2**. Using this easy-to-operate method, without tedious isolation and chromatographic procedures, we have been able to make 6 in quantities up to ten grams by an efficient single crystallization protocol.

The starting material 3,3,3',3'-tetramethyl-1.1'-spirobisindane-6,6'-diol (2) was prepared by the skeletal rearrangement of bisphenol A (1) in excess methansulfonic acid following the earlier reported procedure.¹¹ *O*-Benzylation of 2 with benzyl chloride in the presence of K_2CO_3 in acetonitrile at reflux temperature for 8 h benzyloxyspirobisindane **3b** was produced in 72% yield. Isolation of the product was simple. The reaction mixture was poured into water, extracted with dichloromethane, dried (MgSO₄) and evaporated under reduced pressure. The resulting white solid was filtered with petroleum ether afforded pure **3b**. Nitration of **3b**

Scheme 1. Reagents and Conditions: (i) CH₃SO₃H, rt, 48 h; (ii) Me₂SO₄, K₂CO₃, acetone, reflux, 8 h; (iii) PhCH₂Cl, K₂CO₃, CH₃CN, reflux, 8 h; (iv) AcOH, HNO₃, H₂SO₄, 0 °C \rightarrow rt, 4 h; (v) BBr₃, CH₂CH₂, 0-5 °C, 1 h; (vi) NH₂NH₂·H₂O, Pd-C, EtOH, reflux, 8 h.

Notes

with nitric acid in the presence of sulfuric acid for 5 h was proceeded smoothly on activated indane aromatic ring selectively giving **4b** in 75% yield. Again, the isolation procedure was remarkably simple and similar to that of **3b** except filtering with ethyl ether. On concomitant reduction and debenzylation of **4b** with hydrazine hydrate and 10% Pd-C in refluxing ethanol for 8 h, spirobisindanediaminodiol **6** was produced in 70% yield by the simple precipitation and filtration. The overall yield of **6** from **2** through the compounds **3b** and **4b** is 38%.

In summary, this work discloses an easy-to-handle and chromatography-free synthetic method that can furnish the valuable monomer 3,3,3',3'-tetramethyl-1,1'-spirobisindane-5,5'-diamino-6,6'-diol (6) in multigram quantities.

Experimental Section

Spirobisindane derivatives 2^{11} , 3a, and $4a^9$ were prepared according to the procedures reported in the literatures.

6,6'-Dibenzyloxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane (3b). A mixture of spirobisindanediol 2 (9.24 g, 30 mmol), benzyl chloride (11.3 g, 90 mmol) and K₂CO₃ (12.4 g, 90 mmol) in CH₃CN (120 mL) was stirred at reflux temperature for 8 h. The reaction mixture was poured into water, extracted with CH_2Cl_2 (3 × 100 mL), and dried over MgSO₄. The solvent was evaporated under reduced pressure. The resulting solid was filtered with petroleum ether to produce pure 3b (10.5 g, 72%) as a white solid. mp 184-185 °C; IR (KBr) 1601, 1484, 1358, 1014 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 1.33 \text{ (s, 6H, two CH}_3), 1.37 \text{ (s, 6H, two CH}_3)$ CH₃), 2.25 (d, *J* = 12.9 Hz, 2H, CH₂), 2.35 (d, *J* = 13.2 Hz, 2H, CH₂), 4.92 (s, 4H, CH₂Ph), 6.43 (d, J = 2.3 Hz, 2H, aromatic), 6.87 (dd, J = 8.2 and 2.3 Hz, 2H, aromatic), 7.08 (d, J = 8.5 Hz, 2H, aromatic), 7.27-7.39 (m, 10H, two Ph); ¹³C NMR (75 MHz, CDCl₃) δ 30.5, 31.8, 42.9, 57.8, 59.6, 70.1, 110.2, 114.0, 122.4, 127.6, 127.8, 128.4, 137.1, 144.9, 151.9, 158.5. Anal. Calcd for C₃₅H₃₆O₂: C, 86.03; H, 7.43. Found: C, 85.85; H, 7.29.

6,6'-Dibenzyloxy-3,3,3',3'-tetramethyl-5,5'-dinitro-1,1'spirobisindane (4b). To a chilled mixture (0 °C) of glacial acetic acid (130 mL), 60% HNO₃ (24.8 mL, 360 mmol), and 97% H₂SO₄ (16.0 mL, 300 mmol), dibenzyloxyspirobisindane 3b (14.6 g, 30 mmol) were slowly added. The reaction mixture was stirred for 5 min at 0 °C and then at room temperature for 5 h. The reaction mixture was poured into ice water and the precipate was filtered off. The crude product was dissolved in CH₂Cl₂, dried over MgSO₄, and evaporated under reduced pressure. The resulting solid was filtered with Et_2O to produce pure 4b (13.0 g, 75%) as a slightly yellowish solid. mp 175-178 °C; IR (KBr) 1616, 1580, 1521, 1347, 1289 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.35 (s, 6H, two CH₃), 1.40 (s, 6H, two CH₃), 2.17 (d, J =13.2 Hz, 2H, CH₂), 2.38 (d, J = 13.5 Hz, 2H, CH₂), 4.98 (two d, J = 12.3 Hz, 4H, CH₂Ph), 6.31 (s, 2H, aromatic), 7.21-7.34 (m, 10H, two Ph), 7.66 (s, 2H, aromatic); ¹³C NMR (75 MHz, CDCl₃) δ 30.1, 31.4, 43.4, 58.4, 58.8, 71.0, 110.4, 119.5, 126.9, 128.1, 128.6, 135.4, 140.1, 144.5, 151.8,

155.5. Anal. Calcd for $C_{35}H_{34}N_2O_6$: C, 72.65; H, 5.92; N, 4.84. Found: C, 72.53; H, 5.81; N, 4.98.

3,3,3',3'-Tetramethyl-1,1'-spirobisindane-5,5'-dinitro-6,6'-diol (5). To a chilled (0-5 °C) solution of 4a (8.52 g, 20 mmol) in CH₂Cl₂ was added BBr₃ (5.8 mL, 60 mmol) dropwise manner. The reaction mixture was stirred at same temperature for 1 h. The mixture was poured into cold saturated aq. NaHCO3 solution (500 mL), and extracted with CH_2Cl_2 (200 mL × 3). The combined organic layers were dried (MgSO₄) and the solvent was evaporated under reduced pressure. The resulting solid was filtered with Et2Opetroleum ether to produce pure 5 (6.77 g, 85%) as a yellow solid. mp 238-241 °C;⁸ ¹H NMR (300 MHz, CDCl₃) δ 1.37 (s, 6H, two CH₃), 1.44 (s, 6H, two CH₃), 2.28 (d, J = 13.2Hz, 2H, CH₂), 2.42 (d, J = 13.2 Hz, 2H, CH₂), 6.54 (s, 2H, aromatic), 7.92 (s, 2H, aromatic), 10.61 (s, 2H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 30.1, 31.6, 43.4, 58.2, 58.7, 114.8, 118.7, 133.6, 145.1, 155.3, 160.5.

3,3,3',3'-Tetramethyl-1,1'-spirobisindane-5,5'-diamino-**6,6'-diol (6).** To a stirred suspension of **4b** (11.6 g, 20 mmol) and 10% Pd-C (638 mg, 0.6 mmol) in refluxing ethanol (300 mL) was added NH₂NH₂·H₂O (19.4 mL, 400 mmol) dropwise manner. After stirring at reflux temperature for 8 h, the reaction mixture was filtered with celite and washed with EtOH (20 mL). The organic phase was poured into water and the precipitate was filtered off and dried to give pure 6(4.73 g, 70%) as a white solid. mp 262-265 °C; IR (KBr) 3492, 3376, 3285, 1616, 1506, 1322 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.20 (s, 6H, two CH₃), 1.25 (s, 6H, two CH₃), 1.97 (d, *J* = 12.6 Hz, 2H, CH₂), 2.14 (d, *J* = 12.6 Hz, 2H, CH₂), 4.31 (s, 4H, NH₂), 6.04 (s, 2H, aromatic), 6.37 (s, 2H, aromatic), 8.65 (s, 2H, OH); ¹³C NMR (75 MHz, DMSO d_6) δ 30.7, 31.7, 42.3, 56.2, 59.7, 107.0, 109.1, 135.5, 138.7, 142.2, 143.8.

Acknowledgments. This research was supported by Korea CCS 2020 Program and Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012M3A7B4049745).

References and Notes

- Budd, P. M.; Ghanem, B. S.; Makhseed, S.; Mckeown, N. B.; Msayib, K. J.; Tattershall, C. E. *Chem. Commun.* 2004, 230-231.
- Budd, P. M.; Elabas, E. S.; Ghanem, B. S.; Makhseed, S.; Mckeown, N. B.; Msayib, K. J.; Tattershall, C. E.; Wang, D. *Adv. Mater.* 2004, *16*, 456-459.
- Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; Mckeown, N. B.; Fritsch, D. J. Membr. Sci. 2005, 251, 263-269.
- 4. Mckeown, N. B.; Budd, P. M. *Macromolecules* **2010**, *43*, 5163-5176.
- Mason, C. R.; Maynard-Atem, L.; Al-Harbi, N. M.; Budd, P. M.; Bernardo, P.; Bazzarelli, F.; Clarizia, G.; Jansen, J. C. *Macromolecules* 2011, 44, 6471-6479.
- Li, S.; Jo, H. J.; Han, S. H.; Park, C. H.; Kim, S.; Budd, P. M.; Lee, Y. M. J. Membr. Sci. 2013, 434, 137-147.
- Ma, X.; Swaidan, R.; Belmabkhout, Y.; Zhu, Y.; Litwiller, E.; Jouiad, M.; Pinnau, I.; Han, Y. *Macromolecules* 2012, 45, 3841-

3849.

- Molteni, V.; Rhodes, D.; Rubins, K.; Hansen, M.; Bushman, F. D.; Siegel, J. S. *J. Med. Chem.* 2000, *43*, 2031-2039.
- 9. Kendhale, A. M.; Gonnade, R.; Rajamohanan, P. R.; Hofmann,

H.-J.; Sanjayan, G. J. Chem. Commun. 2008, 2541-2543.

- 10. Four steps overall yield of 6 from 2 through the compounds 3a, 4a and 5 is 47%.
- 11. Chen, W.-F.; Lin, H.-Y.; Dai, S. A. Org. Lett. 2004, 6, 2341-2343.