DOI QR코드

DOI QR Code

Optical Components for High Speed Optical Communications

대용량 광통신 부품 기술 동향

  • Baek, Yongsoon (Optical Internet Components Research Team, Electronics and Telecommunication Research Institute)
  • 백용순 (한국전자통신연구원 광인터넷부품연구실)
  • Received : 2013.11.26
  • Accepted : 2013.12.05
  • Published : 2013.12.25

Abstract

With the explosive growth of internet data traffic due to the FTTH penetration, prevalence of smart devices and cloud network service, the demand for higher bandwidth is ever increasing with the pace of more than 40% annual growth. To accommodate ultra high bandwidth traffic, optical components in each hierarchy have progressed rapidly. WDM has begun to be deployed along with higher bandwidth service in the access network. Next-generation ROADM is under development for efficient network management in the metro network. For long-haul transmission, an advanced modulation scheme based on coherent transmission technology has been adopted to enhance spectral efficiency. In this paper, core components to meet the demands of high speed, high efficiency and low power consumption will be reviewed.

스마트 기기, 클라우드 서비스, 광가입자망 등의 보급에 따른 멀티미디어 기반의 대용량 인터넷 트래픽의 급속한 증가로 통신 수요는 연 40%이상씩 증가하고 있다. 이러한 대역폭 증가를 수용하기 위해서 광통신용 광부품의 진화도 각 계층별로 빠르게 진행되고 있다. 가입자망에서는 변조속도 증가와 더불어 파장다중방식의 도입이 시작되고 있고, 매트로망에서는 보다 효율적인 망 운용을 위해 차세대 ROADM에 대한 개발이 진행중이며, 장거리 통신에서는 코히어런트 통신 기반의 새로운 변조방식이 도입되어 스팩트럼 효율을 향상시키고 있다. 본 논문에서는 이러한 폭발적인 통신 대역폭 증가 요구에 따른 광통신망의 진화와 이를 수용하기 위한 고속화, 효율화, 저전력화로 발전하고 있는 핵심 광부품에 대해 살펴본다.

Keywords

References

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightwave Technol. 28, 662-701 (2010). https://doi.org/10.1109/JLT.2009.2039464
  2. P. J. Winzer and R.-J. Essiambre, "Advanced optical modulation formats," Proc. IEEE 94, 952-985 (2006). https://doi.org/10.1109/JPROC.2006.873438
  3. J. S. Jeong, H.-K. Lee, and C.-H. Lee, "1.25 Gb/s operation at 50-GHz channel spacing based on intensity noise suppression of wavelength-locked Fabry-Perot laser diode," IEEE Photon. Technol. Lett. 21, 602-604 (2009). https://doi.org/10.1109/LPT.2009.2015333
  4. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "Noise suppression of inchorehent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems," J. Lightwave Technol. 23, 2399-2049 (2005). https://doi.org/10.1109/JLT.2005.852023
  5. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, "Extended-reach PON employing 10 Gb/s integrated reflective EAM-SOA," in Proc. ECOC (Brussels, Belgium, Sep. 2008), CD, paper Th.2.F.1.
  6. H.-S. Kim, D. C. Kim, K.-S. Kim, B.-S. Choi, and O-K. Kwon, "10.7 Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier for colorless WDM-PON," Opt. Express 18, 23324-23330 (2010). https://doi.org/10.1364/OE.18.023324
  7. K.-H. Yoon, S. H. Oh, K. S. Kim, O. K. Kwon, D. K. Oh, Y.-O. Noh, and H.-J. Lee, "2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer bragg reflector," Opt. Express 18, 5557-5561 (2010).
  8. K. Prince, T. B. Gibbon, R. Rodes, E. Hviid, C. I. Mikkelsen, C. Neumeyr, M. Ortsiefer, E. Ronneberg, J. Rosskopf, P. Ohlen, E. I. De Betou, B. Stoltz, E. Goobar, J. Olsson, R. Fletcher, C. Abbott, M. Rask, N. Plappert, G. Vollrath, I. T. Monroy, "GigaWaM-next-generation WDM-PON enabling gigabit per-user data bandwidth," J. Lightwave Technology 30, 1444-1454 (2012). https://doi.org/10.1109/JLT.2012.2185039
  9. B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O. K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, "10-Gb/s direct modulation of polymerbased tunable external cavity lasers," Opt. Express 20, 20368-20375 (2012). https://doi.org/10.1364/OE.20.020368
  10. S. Kamei, "Recent progress on athermal AWG wavelength multiplexer," in Proc. OFC/NFOEC (San Diego, CA, USA, March 2009), CD, paper OWO1.
  11. H. Nakamura, "NG-PON2 technologies," in Proc. OFC/NFOEC (Anaheim, CA, USA, March 2013), CD, paper NTh4F.5.
  12. D. Qian, J. Hu, J. Yu, P. Ji, L. Xu, Ting Wang, M. Cvijetic, and T. Kusano, "Experimental demonstration of a novel OFDM-a based 10Gb/s PON architecture," in Proc. ECOC 2007 (Berlin, Germany, 2007), CD, paper 5.4.1.
  13. B. P. Keyworth, "ROADM subsystems and technologies," in Proc. OFC/NFOEC (March 2005), CD, paper OWB5.
  14. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, "Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit," ETRI Journal 31, 770-777 (2009). https://doi.org/10.4218/etrij.09.1209.0024
  15. Y.-T. Han, J. U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, "Fabrication of 10-channel polymer thermo-optic digital optical switch array," IEEE Photon. Technol. Lett. 21, 1556-1558 (2009). https://doi.org/10.1109/LPT.2009.2029870
  16. R. Shankar, M. Florjanczyka, T. J. Halla, A. Vukovicb, and H. Hua, "Multi-degree ROADM based on wavelength selective switches: Architectures and scalability," Opt. Commun. 279, 94-100 (2007). https://doi.org/10.1016/j.optcom.2007.07.022
  17. T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, "Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC," in Proc. OFC/NFOEC (San Diego, CA, USA, Feb. 2008), CD, paper OWC6.
  18. P. Colbourne and B. Collings, "ROADM switching technologies," in Proc. OFC/NFOEC 2011 (Los Angeles, CA, USA, 2011), CD, paper OTuD1.
  19. T. Strasser and J. Wagener, "Wavelength-selective switches for ROADM applications," IEEE J. Select. Topic Quantum Electron. 16, 1150-1157 (2010). https://doi.org/10.1109/JSTQE.2010.2049345
  20. T. Watanabe, K. Suzuki, and T. Takahashi, "Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM," in Proc. OFC/NFOEC 2012 (Los Angeles, CA, USA, March 2012), CD, paper OTh3D.1.
  21. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, "Flexible and grid-less wavelength selective switch using LCOS technology," in Proc. OFC/NFOEC 2011 (Los Angeles, CA, USA, 2011), CD, paper OTuM3.
  22. B. Collings, "New devices enabling software-defined optical networks," IEEE Communications Magazine March, 66-71 (2013).
  23. L. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, "Tunable semiconductor lasers: A tutorial," J. Lightwave Technol. 22, 193-202 (2004). https://doi.org/10.1109/JLT.2003.822207
  24. H. Hatakeyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, "Wavelengthselectable microarray light sources for wide-band DWDM applications," IEEE J. Select. Topics Quantum Electron. 8, 1341-1348 (2002). https://doi.org/10.1109/JSTQE.2002.806717
  25. J. D. Berger, Y. Zhang, J. D. Grade, H. Lee, S. Hrinya, and H. Jerman, "Widely tunable external cavity diode laser based on a MEMS electrostatic rotary actuator," in Proc. OFC 2001 (Anaheim, CA, USA, 2001), CD, paper TuJ2.
  26. L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Select. Topics Quantum Electron. 6, 988-999 (2000). https://doi.org/10.1109/2944.902147
  27. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, A. C. Carter, and M. J. Wale, "Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance," IEEE J. Select. Topics Quantum Electron. 11, 149-156 (2005). https://doi.org/10.1109/JSTQE.2004.841698
  28. J. O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, "Design of a widely tunable modulated grating y-branch laser using the additive vernier effect for improved super-mode selection," in Proc. Semiconductor Laser Conference 2002 (Garmisch-Partenkirchen, Germany, Sep. 2002), pp. 99-100.
  29. http://www.ieee802.org/3/ba/.
  30. Y. Baek, Y. T. Han, C. W. Lee, D. H. Lee, O. K. Kwon, J. W. Shin, S. H. Park, and Y. A. Leem, "Optical components for 100G ethernet transceivers," in Proc. OECC 2012 (Busan, Korea, 2012), pp. 218-219.
  31. C. Cole, "Next generation CFP modules," in Proc. OFC/ NFOEC 2012 (Los Angeles, CA, USA, March 2012), CD, paper NTu1F.1.
  32. P. J. Winzer, "High-spectral-efficiency optical modulation formats," J. Lightwave Technol. 30, 3824-3835 (2012). https://doi.org/10.1109/JLT.2012.2212180
  33. L. Kazovsky, G. Kalogerakis, and W. Shaw, "Homodyne phase-shift-keying systems: Past challenges and future opportunities," J. Lightwave Technol. 24, 4876-4884 (2006). https://doi.org/10.1109/JLT.2006.883692
  34. S. Chandrasekhar and X. Liu, "Enabling components for future high-speed coherent communication systems," in Proc. OFC/NFOEC 2011 (Los Angeles, CA, USA, March 2011), CD, paper OMU5.
  35. OIF, "100 G ultra long Haul DWDM framework document," www.oiforum.com.
  36. H. Yamazaki, T. Yamada, K. Suzuki, T Goh, A Kaneko, A. Sano, E. Yamada, and Y. Miyamoto, "Integrated 100-Gb/s PDM-QPSK modulator using a hybrid assembly technique with silica-based PLCs and LiNbO3 phase modulators," in Proc. ECOC 2008 (Brussels, Belgium, 2008), CD, paper Mo.3.C.1.
  37. K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K.-O. Velthaus, and I. Woods, "High performance 40 GHz InP Mach-Zehnder modulator," in Proc. OFC 2012 (Los Angeles, CA, USA, March 2012), CD, paper OW4F.7.
  38. N. Kono, T. Kitamura, H. Yagi, N. Itabashi, T. Tatsumi, Y. Yamauchi, K. Fujii, K. Horino, S. Yamanaka, K. Tanaka, K. Yamaji, C. Fukuda, and H. Shoji, "Compact and low power DP-QPSK modulator module with InP-based modulator and driver ICs," in Proc. OFC 2013 (Anaheim, CA, USA, March 2013), CD, paper OW1G.2.
  39. L. Stampoulidis, M. F. O'Keefe, E. Giacoumidis, R. G. Walker, Y. Zhou, N. Cameron, E. Kehayas, I. Tomkos, and L. Zimmermann, "Fabrication of the first high-speed GaAs IQ electro-optic modulator arrays and applicability study for low-cost Tb/s direct-detection optical OFDM networks," in Proc. OFC 2013 (Anaheim, CA, USA, March 2013), CD, paper OW1G.4.
  40. B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, "112 Gb/s DP-QPSK transmission over 2427 km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver," in Proc. OFC 2013 (Anaheim, CA, USA, March 2013), CD, paper OTh1D.1.
  41. Y. Kurata, Y. Nasu, M. Tamura, R. Kasahara, S. Aozasa, T. Mizuno, H. Yokoyama, S. Tsunashima, and Y. Muramoto, "Silica-based PLC with heterogeneously-integrated PDs for one-chip DP-QPSK receiver," Opt. Express 20, B264-B269 (2012). https://doi.org/10.1364/OE.20.00B264
  42. K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, "100-Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio," Opt. Express 19, B125-B130 (2011). https://doi.org/10.1364/OE.19.00B125
  43. J. Wang, C. Zawadzki, N. Mettbach, W. Brinker, Z. Zhang, D. Schmidt, N. Keil, N. Grote, and M. Schell, "Polarization insensitive 25-Gbaud direct D(Q)PSK receiver based on polymer planar lightwave hybrid integration platform," Opt. Express 19, 12197-12207 (2011). https://doi.org/10.1364/OE.19.012197
  44. P. Runge, S. Schubert, A. Seeger, K. Janiak, J. Stephan, D. Trommer, P. Domburg, and M. L. Nielsen, "Monolithic InP receiver chip with a $90^{\circ}$ hybrid and 56 GHz balanced photodiodes," Opt. Express 20, B250-B255 (2012). https://doi.org/10.1364/OE.20.00B250
  45. H. Yamazaki, T. Goh, T. Saida, Y. Hashizume, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, "Dual-carrier dual-polarization IQ modulator driven with high-speed DACs for 400-Gb/s applications," in Proc. ECOC 2008 (Brussels, Belgium, 2008), CD, paper We.3.E.1.
  46. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, "Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network," IEEE Commun. Mag. 48, 138-145 (2010).
  47. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, "Mode-division multiplexing over 96 km of few-mode fiber using coherent $6{\times}6$ MIMO processing," J. Lightwave Technol. 30, 521-531 (2012). https://doi.org/10.1109/JLT.2011.2174336
  48. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, "WDM/SDM transmission of $10{\times}128$-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km.b/s/Hz," Opt. Express 20, 706-711 (2012). https://doi.org/10.1364/OE.20.000706

Cited by

  1. Implementation of PLC Device by Roll to Roll Process vol.31, pp.6, 2014, https://doi.org/10.7736/KSPE.2014.31.6.469