Nucleotide-Binding Domain and Leucine-Rich Repeat Containing Receptor (NLR) and its Signaling Pathway

  • Park, Sangwook (Department of Pharmacology, Ajou University School of Medicine) ;
  • Gwon, Sun-Yeong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • Received : 2013.06.12
  • Accepted : 2013.09.27
  • Published : 2013.09.30

Abstract

Since the identification and characterization of toll-like receptors (TLR) in Drosophila, numerous scientific studies have examined the role of TLRs in host innate immunity. Recent studies have suggested a convergence of the nuclear factor kappa B (NF-${\kappa}B$) signaling and cytokine production regulated by the cytosolic elicitor known as NLRs (nucleotide-binding domain and leucine-rich repeat containing domain receptors) as a key modulator in inflammatory diseases. Among the NLRs, NOD1 and NOD2 have been intensively investigated for its role in inflammatory bowel disease (IBD). On the other hand, NLRs such as NLRP3, NLRP1, and NLRC4 (also known as IPAF) have been identified to form the inflammasome to activate downstream signaling molecules in response to pathogenic microbes. There is evidence to suggest that substantial crosstalk exists for the TLR and NLR signaling pathway in response to pathogen associated molecular pattern (PAMP). However, the substrate and the mechanistic role of NLRs are largely unknown in innate immune response. Understanding the signaling mechanisms by which NLRs recognize PAMP and other danger signals will shed light on elucidating the pathogenesis of various human inflammatory diseases such as IBD.

Keywords

References

  1. Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, Cantley LC. Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol Cell Biol. 2007. 27: 6012-6025. https://doi.org/10.1128/MCB.00270-07
  2. Barnich N, Hisamatsu T, Aguirre JE, Xavier R, Reinecker HC, Podolsky DK. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J Biol Chem. 2005. 280: 19021-19026. https://doi.org/10.1074/jbc.M413776200
  3. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe. 2010. 8: 471-483. https://doi.org/10.1016/j.chom.2010.11.007
  4. Bruey JM, Bruey-Sedano N, Luciano F, Zhai D, Balpai R, Xu C, Kress CL, Bailly-Maitre B, Li X, Osterman A, Matsuzawa S, Terskikh AV, Faustin B, Reed JC. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007. 129: 45-56. https://doi.org/10.1016/j.cell.2007.01.045
  5. Bruey JM, Bruey-Sedano N, Newman R, Chandler S, Stehlik C, Reed JC. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-${\kappa}B$ and caspase-1 activation in macrophages. J Biol Chem. 2004. 279: 51897-51907. https://doi.org/10.1074/jbc.M406741200
  6. Conti BJ, Davis BK, Zhang J, O'Connor W Jr, Williams KL, Ting JP. CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J Biol Chem. 2005. 280: 18375-18385. https://doi.org/10.1074/jbc.M413169200
  7. Damiano JS, Oliveira V, Welsh K, Reed JC. Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem J. 2004. 381: 213-219. https://doi.org/10.1042/BJ20031506
  8. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011. 145: 745-757. https://doi.org/10.1016/j.cell.2011.04.022
  9. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol. 2006. 7: 1250-1257. https://doi.org/10.1038/ni1412
  10. Harton JA, Linhoff MW, Zhang J, Ting JP. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucinerich repeat domains. J Immunol. 2002. 169: 4088-4093.
  11. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nunez G, Inohara N. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-${\kappa}B$ activation. EMBO J. 2008. 27: 373-383. https://doi.org/10.1038/sj.emboj.7601962
  12. Hsu LC, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW, Eckmann L, Powell JJ, Nizet V, Dixit VM, Karin M. A NOD2-NALP1 complex mediates caspase-1-dependent IL-$1{\beta}$ secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A. 2008. 105: 7803-7808. https://doi.org/10.1073/pnas.0802726105
  13. Hsu YM, Zhang Y, You Y, Wang D, Li H, Duramad O, Qin XF, Dong C, Lin X. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007. 8: 198-205. https://doi.org/10.1038/ni1426
  14. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkei Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001. 411: 599-603. https://doi.org/10.1038/35079107
  15. Hysi P, Kabesch M, Moffatt MF, Schedel M, Carr D, Zhang Y, Boardman B, von Mutius E, Weiland SK, Leupold W, Fritzsch C, Klopp N, Musk AW, James A, Nunez G, Inohara N, Cookson WO. NOD1 variation, immunoglobulin E, and asthma. Hum Mol Genet 2005. 14: 935-941. https://doi.org/10.1093/hmg/ddi087
  16. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Nunez G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-${\kappa}B$. J Biol Chem. 1999. 274: 14560-14567. https://doi.org/10.1074/jbc.274.21.14560
  17. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Flavell RA. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005. 307: 731-734. https://doi.org/10.1126/science.1104911
  18. Kufer TA, Kremmer E, Banks DJ, Philpott DJ. Role for Erbin in bacterial activation of Nod2. Infect Immun. 2006. 74: 3115-3124. https://doi.org/10.1128/IAI.00035-06
  19. Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK, Taxman DJ, Ting JP. Monarch-1 suppresses noncanonical NF-${\kappa}B$ activation and p52-dependent chemokine expression in monocytes. J Immunol. 2007. 178: 1256-1260.
  20. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004. 117: 561-574. https://doi.org/10.1016/j.cell.2004.05.004
  21. Masumoto J, Yang K, Varambally S, Hasegawa M, Tomlins SA, Qiu S, Fujimoto Y, Kawasaki A, Foster SJ, Horie Y, Mak TW, Nunez G, Chinnaiyan AM, Fukase K, Inohara N. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J Exp Med. 2006. 203: 203-213. https://doi.org/10.1084/jem.20051229
  22. McDonald C, Chen FF, Ollendorff V, Ogura Y, Marchetto S, Lecine P Borg JP, Nunez G. A role for Erbin in the regulation of Nod2-dependent NF-${\kappa}B$ signaling. J Biol Chem. 2005. 280: 40301-40309. https://doi.org/10.1074/jbc.M508538200
  23. McGovern DP, Hysi P, Ahmad T, van Heel DA, Moffatt MF, Carey A , Cookson WO, Jewell DP. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet. 2005. 14: 1245-1250. https://doi.org/10.1093/hmg/ddi135
  24. Mo JY, Boyle JP, Howard CB, Monie TP, Davis BK, Duncan JA. Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J Biol Chem. 2012. 287: 23057-23067. https://doi.org/10.1074/jbc.M112.344283
  25. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-${\kappa}B$. J Biol Chem. 2001. 276: 4812-4818. https://doi.org/10.1074/jbc.M008072200
  26. Park JH, Kim YG,McDonald C, Kanneganti TD, Hasegawa M, Body-Malapel M, Inohara N, Nunez G. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol. 2007. 178: 2380-2386.
  27. Park S, Ha SD, Coleman M, Meshkibaf S, Kim SO. p62/SQSTM1 enhances NOD2-mediated signaling and cytokine production through stabilizing NOD2 oligomerization. PLoS One. 2013. 8: 1-11.
  28. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002. 277: 21119-21122. https://doi.org/10.1074/jbc.C200179200
  29. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nunez G. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigellainfected macrophages. PLoS Pathog. 2007. 3: 1082-1091.
  30. Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE. The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol. 2007. 29: 289-301. https://doi.org/10.1007/s00281-007-0083-2
  31. Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC, Reith W, Schreiber S, Steimle V, Ward PA. The NLR gene family: a standard nomenclature. Immunity. 2008. 28: 285-287. https://doi.org/10.1016/j.immuni.2008.02.005
  32. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Giardin SE, Philpott DJ. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010. 11: 55-62. https://doi.org/10.1038/ni.1823