The Effects of Hovenia dulcis Fruit Hot Water Extracts on Anti-fatigue and Improvement of the Exercise Performance in SD Rats

랫드를 이용한 헛개나무과병 열수추출물 투여가 운동에 의한 피로회복과 운동수행능력에 미치는 기전 규명

  • Na, Chun-Soo (Lifetree Biotechnology Institute, Lifetree Bitotech Co. LTd.) ;
  • Kim, Hee Kyung (Lifetree Biotechnology Institute, Lifetree Bitotech Co. LTd.) ;
  • Kim, Jin Beom (Lifetree Biotechnology Institute, Lifetree Bitotech Co. LTd.) ;
  • Roh, Hyun Jeong (Lifetree Biotechnology Institute, Lifetree Bitotech Co. LTd.) ;
  • Um, Na-Na (Lifetree Biotechnology Institute, Lifetree Bitotech Co. LTd.) ;
  • Noh, Hae-Ji (Lifetree Biotechnology Institute, Lifetree Bitotech Co. LTd.) ;
  • Na, Dae-Seung (School of Life Sciences and Biotechnology, Korea University) ;
  • Dong, Mi-Sook (School of Life Sciences and Biotechnology, Korea University) ;
  • Hong, Cheol Yi (Lifetree Biotechnology Institute, Lifetree Bitotech Co. LTd.)
  • Received : 2013.08.22
  • Accepted : 2013.10.23
  • Published : 2013.10.31

Abstract

The present study investigated the effects of Hovenia Dulcis (HD) fruit extract powder on the improvement of physical activity, especially exercise capacity. Forty mice were divided into 4 groups including normal controls, negative controls, 100 (HD-100) and 200 (HD-200) mg/kg HD fruit extract powder groups for 5-times exercises using treadmill. Normal control did not performed treadmill running but others did 5-times for 10 days. HD fruit extract powders were administrated orally one-times per day for 10 days before treadmill exercise and normal and negative controls were fed with excipient water. After 5-times exercise, blood biochemical analysis showed that aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities and blood lactate concentration were statistically increased in negative controls than in normal controls. They were decreased in HD fruit extract powder groups, compared with negative controls. These results were considered as the effects of HD fruit extract powders on reduced tissue damages during exercise. Other measured indices did not reveal remarkable differences. All together, these results suggest that HD fruit extract powders may enhance the exercise performance by recovering the exercise-fatigue via blood lactate concentration by reducing blood LDH activity and via reduction of blood CK and AST activity.

Keywords

References

  1. Rubin, H. : Cancer as a dynamic developmental disorder. Cancer. Res. 45, 2935 (1985).
  2. Aeschbacher, H. U. and Wurzner, H. P. : An evalution of constant and regular coffee in the Ames mutagenicity test. Toxicol. Letter. 5, 139 (1980). https://doi.org/10.1016/0378-4274(80)90163-0
  3. 임윤택, 김영욱, 이철원 : 태권도선수를 위한 경기력 향상 보조물 (에르고제닉에이드) 고찰. 코칭능력개발지 9, 3 (2007).
  4. 이하영, 백일영, 우진희 : Pyruvate 투여가 장시간 운동 시 혈중 피로물질과 지질성분에 미치는 영향. 체육과학연구 16, 18 (2005).
  5. Pruett, E. D. : Glucose and insulin concentrations during prolonged work stress in men living on different diets. J. Appl. Physiol. 28, 199 (1970).
  6. Hargreaves, M., Costill, D. L., Coggan, A., Fink, W. J. and Nishibata, I. : Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med. Sci. Sports. Exerc. 16, 219 (1984).
  7. Holloszy, J. O. and Booth, F. W. : Biochemical adaptation to endurance exercise in muscle. Annu. Rev. Physiol. 38, 273 (1976). https://doi.org/10.1146/annurev.ph.38.030176.001421
  8. 최은택, 조성봉 : 심폐기능이 최대 및 최대하 운동 시 혈청 젖산탈수소효소 활성도 및 동위효소 분포비의 변화에 미치는 영향. 한국체육학회지 33, 355 (1994).
  9. Wilmore, H. J. : Exercise and Sport Science Review. Academic Press, New York, 1, 18, 71 (1973).
  10. Garbus, J., Highman, B. and Altland, P. D. : Serum enzymes and lactic dehydrogenase isoenzymes after exercise and training in rats. Am. J. Physiol. 207, 467 (1964).
  11. Agner, E., Kelbaek, H., Fogh-Anderson, N. and Morck, H. I. : Coronary and skeletal muscle enzyme changes during a 14km run. Acta. Med. Scand. 224, 183 (1988).
  12. Munjal, D. D., McFadden, J. A., Matix, P. A., Coffman, K. D. and Cattaneo, S. M. : Changes in serum myoglobin, total creatine kinase, lactate dehydrogenase, and creatine kinase MB levels in runners. Clin. Biochem. 16, 195 (1983). https://doi.org/10.1016/S0009-9120(83)90279-5
  13. Nosaka, K. and Clarkson, P. M. : Influence of previous concentric exercise on eccentric exercise-induced muscle damage. J. Sports. Sci. 15, 477 (1997). https://doi.org/10.1080/026404197367119
  14. Gleeson, M., Blannin, A. K., Walsh, N. P., Field, C. N. and Pritchard, J. C. : Effect of exercise-induced muscle damage on the blood lactate response to incremental exercise in humans. Eur. J. Appl. Physiol. Occup. Physiol. 77, 292 (1998). https://doi.org/10.1007/s004210050336
  15. Horita, T., Komi, P. V., Nicol, C. and Kyrolainen, H. : Effect of exhausting stretch-shortening cycle exercise on the time course of mechanical behavior in the drop jump: possible role of muscle damage. Eur. J. Appl. Physiol. Occup. Physiol. 79, 160 (1999). https://doi.org/10.1007/s004210050490
  16. Lovlin, R., Cottle, W., Pyke, I., Kavanagh, M. and Belcastro, A. N. : Are induces of free radical damage related to exercise intensity. Eur. J. Appl. Physiol. Occup. Physiol. 6, 313 (1987).
  17. Criswell, D., Powers, S., Dodd, S., Lawler, J., Edwards, W., Renshler, K. and Grinton, S. : High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med. Sci. Sports. Exerc. 25, 1135 (1993).
  18. Salminen, A. and Vihiko, V. : Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta. Physiol. Scand. 117, 109 (1983). https://doi.org/10.1111/j.1748-1716.1983.tb07184.x
  19. Astrand, P. O., Hallback, I., Hedman, R. and Saltin, B. : Blood lactates after prolonged severe exercise. J. Appl. Physiol. 18, 619 (1963).
  20. Graham, T. E. : Oxygen delivery and blood and muscle lactate changes during muscular activity. Canad. J. Appl. Sport. Sci. 3, 153 (1978).
  21. Krebs, H. A. : Gluconeogenesis. Proc. Roy. Soc. (Lond). 159, 545 (1964). https://doi.org/10.1098/rspb.1964.0019
  22. Krebs, H. A. and Woodford, M. : Fructose 1,6-diphosphatase in striated muscle. Biochem. J. 94, 436 (1965).
  23. Opie, L. H. and Newsholme, E. A. : The activites of fructose 1,6 diphosphatase, phosphorfructokinase, phosphoenolpyruvate carboxykinase in white and red muscle. Biochem. J. 103, 391 (1967).
  24. Spina, R. J., Chi, M. M., Hopkins, M. G., Nemeth, P. M., Lowry, O. H. and Holloszy, J. O. : Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J. Appl. Physiol. 80, 2250 (1996).
  25. Holloszy, J. O., Oscai, L. B., Don, I. J. and Mole, P. A. : Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. Biophys. Res. Commun. 40, 1368 (1970). https://doi.org/10.1016/0006-291X(70)90017-3
  26. 나천수, 정남철, 양규환, 김세현, 정하숙, 동미숙 : 헛개나무 (Hovenia dulcis var. koreana) 과병 열수추출물의 간보호 및 혈중 알코올 저하 작용. 약학회지 48, 34 (2004).
  27. 나천수, 홍철이, 나대승, 김진범, 윤순영, 이상범, 동미숙 : 헛개 나무 열매 열수추출물 투여에 의한 생쥐의 지구력 운동 수행 능력 향상 및 피로개선 효과. 생약학회지 44, 1 (2013).
  28. Ohno, H., Yamashita, H., OoKawara, T. and Saitog, D. : Training effects on centration of immunoreactive SOD isoenzymes in human plasma. TogoKu. J. Exp. Med. 167, 301 (1992). https://doi.org/10.1620/tjem.167.301
  29. Alessio, H. M. and Goldfard, A. H. : Lipid peroxidation and scavenger enzymes during exercise : adaptative response to training. J. Appl. Physiol. 64, 1333 (1988).
  30. Murase, T., Haramizu, S., Shimotoyodome, A., Tokimitsu, I. and Hase, T. : Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1550 (2006). https://doi.org/10.1152/ajpregu.00752.2005
  31. Na, C. S., Yoon, S. Y., Kim, J. B., Na, D. S., Dong, M. S., Lee, M. Y. and Hong, C. Y. : Anti-fatigue activity of Hovenia dulcis on a swimming mouse model through the inhibition of stress hormone expression and antioxidation. Am. J. Chin. Med. 41, 945 (2013). https://doi.org/10.1142/S0192415X13500638
  32. Wilmore, J. H. and Costill, D. L. : Training for sport and activity: The physiological basis of the conditioning process. Wm C Brown Publication. Dubuque. USA, 32 (1988).
  33. Hermansen, L. and Vaage, O. : Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. Am. J. Physiol. 233, 422 (1977).
  34. Keul, J., Doll, E. and Keppler, D. : Muskelstoffwechsel. Munchen. 247 (1969).
  35. Asmussen, E. : Pyruvate and lactate content of the blood during and after muscular work. Acta. Physiol. Scand. 20, 125 (1949).
  36. Aetland, P. D. and Highman, B. : Effect of exercise on serum enzyme values and tissues and tissues on serum enzyme values and tissues of rat. Am. J. Physiol. 201, 393 (1961).
  37. Fowler, W. M., Chowdhury, S. R., Pearson, C. M., Gardner, G. and Bratton, R. : Changes in serum enzyme levels after exercise in trained and untrained subjects. J. Appl. Physiol. 17, 943 (1962).
  38. 윤진환, 정일규. 휴먼 퍼포먼스와 운동생리학(전정판). 대경북스, 서울, pp. 86, 120, 280, 347, 349-350 (2011).
  39. Janssen, G. M., Kuipers, H., Willems, G. M., Does, R. J., Janssen, M. P. and Geurten, P. : Plasma activity of muscle enzymes: quantification of skeletal muscle damage and relationship with metabolic variables. Int. J. Sports. Med. 10, 160 (1989). https://doi.org/10.1055/s-2007-1024966
  40. 윤진환, 지용석, 우도영 : 카누선수의 암에르고미터 운동시 혈중 젖산, LDH와 CPK 활성변화. 한국체육교육학회지 7, 70 (2002).
  41. Jeukendrup, A. E., Saris W. H. M. and Wagenmakers, A. J. M. : Fat metabolism during exercise: A Review. Int. J. Sports. Med. 19, 231 (1998). https://doi.org/10.1055/s-2007-971911