DOI QR코드

DOI QR Code

Precise Prediction of Optical Performance for Near Infrared Instrument Using Adaptive Fitting Line

  • Ko, Kyeongyeon (Korea Astronomy and Space Science Institute) ;
  • Han, Jeong-Yeol (Korea Astronomy and Space Science Institute) ;
  • Nah, Jakyoung (Korea Astronomy and Space Science Institute) ;
  • Oh, Heeyoung (Korea Astronomy and Space Science Institute) ;
  • Yuk, In-Soo (Korea Astronomy and Space Science Institute) ;
  • Park, Chan (Korea Astronomy and Space Science Institute) ;
  • Chun, Moo-Young (Korea Astronomy and Space Science Institute) ;
  • Oh, Jae Sok (Korea Astronomy and Space Science Institute) ;
  • Kim, Kang-Min (Korea Astronomy and Space Science Institute) ;
  • Lee, Hanshin (Department of astronomy, University of Texas at Austin) ;
  • Jeong, Ueejeong (Korea Astronomy and Space Science Institute) ;
  • Jaffe, Daniel T. (Department of astronomy, University of Texas at Austin)
  • Received : 2013.08.23
  • Accepted : 2013.11.26
  • Published : 2013.12.15

Abstract

Infrared optical systems are operated at low temperature and vacuum (LT-V) condition, whereas the assembly and alignment are performed at room temperature and non-vacuum (RT-NV) condition. The differences in temperature and pressure between assembly/alignment environments and operation environment change the physical characteristics of optical and opto-mechanical parts (e.g., thickness, height, length, curvature, and refractive index), and the resultant optical performance changes accordingly. In this study, using input relay optics (IO), among the components of the Immersion GRating INfrared Spectrograph (IGRINS) which is an infrared spectrograph, a simulation based on the physical information of this optical system and an actual experiment were performed; and optical performances in the RT-NV, RT-V, and LT-V environments were predicted with an accuracy of $0.014{\pm}0.007{\lambda}$ rms WFE, by developing an adaptive fitting line. The developed adaptive fitting line can quantitatively control assembly and alignment processes below ${\lambda}/70$ rms WFE. Therefore, it is expected that the subsequent processes of assembly, alignment, and performance analysis could not be repeated.

Keywords

References

  1. Aalco, Technical Information, cited 2013 Aug 01, available form: http://www.aalco.co.uk/datasheets/Aluminium­Alloy_6061-T6_145.ashx 313 http://janss.kr
  2. Batchelder DN, Simmons RO, Lattice Constants and Thermal Expansivities of Silicon and of Calcium Fluoride between 6K and 322K, J. Chem. Phys, 41, 2324 (1964). http://dx.doi.org/10.1063/1.1726266
  3. Brown WR, Epps HW, Fabricant DG, The Cryogenic Refractive Indices of S-FTM16, a unique Optical Glass for Near-Infrared instruments, PASP, 116, 833-841 (2004). https://doi.org/10.1086/424496
  4. Dohlen K, Origne A, Ferlet M, Optical alignment verification of the Herschel . SPIRE Instrument, Proc. SPIE, 5487, 448-459 (2004). http://dx.doi.org/10.1117/12.551128
  5. Glazenborg-Kluttig AW, Przygodda F, Hanenburg H, Morel S, Pel JW, Realization of the MIDI cold optics, Proc. SPIE, 4838, 1171-1181 (2003). http://dx.doi. org/10.1117/12.459697
  6. Insausti M, Garzon F, Rasilla JL, Blanche PA, Lemaire P, Performances of NIR VPHGs at cryogenic temperature, Proc SPIE, 7018, 70184T-1 (2008). http://dx.doi. org/10.1117/12.788896
  7. Jaffe DT, Lee S, Lee H, Park C, Chun MY, et al., IGRINS Critical Design Review, KASI-UT IGRINS project team (2011).
  8. Kaneda H, Onaka T, Nakagawa T, Enya K, Murakami H, et al., Cryogenic optical performance of the ASTRO-F SiC telescope, Appl. Optics, 44, 32, 6823-6832 (2005). https://doi.org/10.1364/AO.44.006823
  9. Kim ED, Choi YW, Kang MS, Reverse-optimization alignment algorithm using Zernike sensitivity, J. Opt. Soc. Korea, 9, 2, 68-73 (2005). https://doi.org/10.3807/JOSK.2005.9.2.068
  10. Kim S, Yang HS, Lee YW, Kim SW, Merit function regression method for efficient alignment control of two-mirror optical systems, Opt. Express, 15, 8 (2007).
  11. Kim Y, Yang HS, Kim SW, Lee YW, Alignment of off-axis optical system with multi mirrors using derivative of Zernike polynomial coefficient, Proc. SPIE, 7433, 74330C (2009). http://dx.doi.org/10.1117/12.825826
  12. Lee H, IGRINS Input optics and slit viewer optical tolerance report, KASI-UT IGRINS Project Team (2011).
  13. Lee H, IGRINS interferomenter test requirement, KASI-UT IGRINS Project Team (2012).
  14. Lee S, Strubhar J, Lee H, Jaffe D, IGRINS optical alignment plan, KASI-UT IGRINS Project Team, SE-0008 (2011).
  15. Leviton DB, Frey B, Kvamme T, High accuracy, absolute, cryogenic refractive index measurements of infrared lens materials for JWST NIRCam using CHARMS, Proc. SPIE, 5904, 590400-1 (2005). http://dx.doi. org/10.1117/12.619306
  16. Liu J, Long F, Zhang W, Study on computer-aided alignment method, Proc. SPIE, 5638, 674-681 (2005). http://dx.doi. org/10.1117/12.574082
  17. Marquardt ED, Le JP, Radebaugh R, Cryogenic Material Properies Database, in 11th International Cryocooler conference, Keystone, CO, 20-22 June 2000.
  18. National Institute of Standards and Technology, Material Properties: 6061-T6 Aluminum UNS A96061, cited 2013 Aug 01, available from: http://cryogenics.nist.gov/ MPropsMAY/6061%20Aluminum/6061_T6Aluminum_ rev.htm
  19. Navarro R, Schoenmaker T, Kroes G, Oudenhuysen A, Jager R, et al., JWST-MIRI spectrometer main optics design and mait results, in 7th International Conference on Space Optics, Toulouse, France 14-17 Oct 2008.
  20. Perrin G, Leinert C, Graser U, Waters LBFM, Lopez B, MIDI, the 10 ${\mu}m $ interferometer of the VLT, EAS, 6,127 (2002). http://dx.doi.org/10.1051/eas:2003010
  21. Rio Y, Lagage PO, Dubreuil D, Tourrette T, Dhenain G, et al., VISIR: A mid infrared imager and spectrometer for the VLT, Proc. SPIE, 3354, 615-626 (1998). http://dx.doi. org/10.1117/12.317288
  22. Roose S, Cucchiaro A, Chambure D, Design of the cryo­optical test of the Planck reflectors, First international workshop on Test Philosophies, Standards, Methods and Quality for Space Systems, Torino, Italy, 18-19 March 2003.
  23. Ryder LA, Cryogenic test results of engineering test unit optical components of the Near Infrared Camera for the James Webb Space Telescope, Proc. SPIE, 7010, 701010­1 (2008). http://dx.doi.org/10.1117/12.787709
  24. Sellmeier W, Zur Erklarung der abnormen Farbenfolge im Spectrum einiger Substanzen, Annalen der physic und Chemie, 219, 272-282 (1871). https://doi.org/10.1002/andp.18712190612
  25. Suganuma M, Imai T, Katayama H, Naitoh M, Tange Y, et al., Optical testing of lightweight large all-C/SiC optics, in 10th international Conference on Space Optics, Rhodes Island, Greece, 4-8 Oct 2010.
  26. Taccola M, Bagnasco G, Barho R, Caprini GC, Giampietro MD, et al., The Cryogenic Refocusing Mechanism of NIRSpec Opto-Mechanical Design, Analysis and Testing, Proc. SPIE, 7018, 70181Z (2008). http://dx.doi. org/10.1117/12.787868