DOI QR코드

DOI QR Code

A Method for the Measurement of Methane Gas Based on Multi-beam Interferometry

  • Ye, Jiansen (School of Opto-Electronics, Beijing Institute of Technology) ;
  • Li, Zhuo (School of Opto-Electronics, Beijing Institute of Technology)
  • 투고 : 2013.08.09
  • 심사 : 2013.10.16
  • 발행 : 2013.12.25

초록

A method for the measurement of the concentration of methane is experimentally demonstrated. The wavelength filter and gas cell are combined by using one Fabry-Perot etalon, which is filmed with the reflectivity of 96%. The optical broadband source is not only filtered to match the absorption wavelength of methane, but also absorbed by the methane in the same Fabry-Perot etalon. The concentration of the methane can be detected directly by measuring the transmission intensity. Compared with the conventional method, the proposed method possesses low costand high stability.

키워드

참고문헌

  1. G. De Smedt, F. de Corte, R. Notele, and J. Berghmans, "Comparison of two standard test methods for determining explosion limits of gases at atmospheric conditions," J. Hazard. Mater. 70, 105-113 (1999). https://doi.org/10.1016/S0304-3894(99)00163-6
  2. B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection-from concept to system realisation," Sens. Actuators B Chem. 51, 25-37 (1998). https://doi.org/10.1016/S0925-4005(98)00184-1
  3. K. Milenko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Wolinski, H. Wei, and W. Tong, "Photonic crystal fiber tip interferometer for refractive index sensing," Opt. Lett. 37, 1373-1375 (2012). https://doi.org/10.1364/OL.37.001373
  4. H. Tai, K. Yamamoto, M. Uchida, S. Osawa, and K. Uehara, "Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers," IEEE Photon. Technol. Lett. 4, 804-807 (1992). https://doi.org/10.1109/68.145278
  5. G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, "Design of a fiber optic multi-point sensor for gas detection," Sens. Actuators B 51, 227-232 (1998). https://doi.org/10.1016/S0925-4005(98)00199-3
  6. F. Corinna, L. Florian, D. Stefan, M. Verena, and M. Boris, "Near-infrared hollow waveguide gas sensors," Appl. Spectrosc. 65, 1269-1274 (2011). https://doi.org/10.1366/11-06286
  7. Y. Zhang, M. Zhang, and W. Jin, "Multi-point, fiberoptic gas detection with intra-cavity spectroscopy," Opt. Commun. 220, 361-364 (2003). https://doi.org/10.1016/S0030-4018(03)01421-4
  8. W. G. Ma, L. Dong, W. B. Yin, C. Y. Li, and S. T. Jia, "Frequency stabilization of diode laser to 1.637 nm based on the methane absorption line," Chin. Opt. Lett. 2, 486-488 (2004).
  9. M. J. Lee and W. Y. Choi, "Performance comparison of two types of silicon avalanche photodetectors based on N-well/P-substrate and P+/N-well junctions fabricated with standard CMOS technology," J. Opt. Soc. Korea 15, 1-3 (2011). https://doi.org/10.3807/JOSK.2011.15.1.001
  10. X. Wu, Y. Wang, L. Chen, and X. Huang, "A novel fibre-optic system for methane detection," Proc. SPIE 6830, 68301B-1-68301B-7 (2007).
  11. L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, "High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry-Perot cavity," Sens. Actuators B 127, 350-357 (2007). https://doi.org/10.1016/j.snb.2007.04.030
  12. E. M. Georgieva, W. S. Heaps, and E. L. Wilson, "Differential radiometers using Fabry-Perot interferometric technique for remote sensing of greenhouse gases," IEEE Transactions on Geoscience and Remote Sensing 46, 3115-3122 (2008). https://doi.org/10.1109/TGRS.2008.921570
  13. B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, "Passive infrared imaging sensor for standoff detection of methane leaks," Chemical and Biological Standoff Detection II. Proc. SPIE 5584, 93-99 (2004).
  14. B. W. Kang and C. H. Kim, "An amplified WDM-PON using broadband light source seeded optical sources and a novel bidirectional reach extender," J. Opt. Soc. Korea 15, 222-226 (2011). https://doi.org/10.3807/JOSK.2011.15.3.222
  15. K. Yoshida, K. Tanaka, T. Tsujimura, and Y. Azuma, "Assisted focus adjustment for free space optics system coupling single-mode optical fibers," IEEE T. Ind. Electron. 60, 5306-5614 (2013). https://doi.org/10.1109/TIE.2012.2218554
  16. M. A. Pereza, J. Kitchingb, and A. M. Shkel, "Design and demonstration of PECVD multilayer dielectric mirrors optimized for micromachined cavity angled sidewalls," Sens. Actuators A 155, 23-32 (2009). https://doi.org/10.1016/j.sna.2008.10.007
  17. P. G. Jia and D. H. Wang, "An active temperature compensated fiber-optic Fabry-Perot accelerometer system for simultaneous measurement of vibration and temperature," IEEE Sens. J. 13, 2334-2340 (2013). https://doi.org/10.1109/JSEN.2013.2251879
  18. Y. S. Rumala and A. E. Leanhardt, "Multiple-beam interference in a spiral phase plate," J. Opt. Soc. Am. B 30, 615-620 (2013). https://doi.org/10.1364/JOSAB.30.000615
  19. Q. M. Wang, Y. M. Zhang, and W. H. Liu, "Fabry-Perot etalon filter," Proc. SPIE 6027, 60271-1-60271-6 (2006).
  20. C. S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003). https://doi.org/10.1016/S0030-4018(03)01269-0
  21. J. C. Yang, L. J. Xu, and W. M. Chen, "An optical fiber methane gas sensing film sensor based on core diameter mismatch," Chin. Opt. Lett. 8, 482-484 (2010). https://doi.org/10.3788/COL20100805.0482
  22. N. Gayraud, L. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. Macpherson, "Mid-infrared gas sensing using a photonic bandgap fiber," Appl. Opt. 47, 1269-1277 (2008). https://doi.org/10.1364/AO.47.001269

피인용 문헌

  1. Research on multi-component gas optical detection system based on conjugated interferometer vol.7, pp.3, 2017, https://doi.org/10.1007/s13320-017-0405-5
  2. A Vapor Sensor Based on a Porous Silicon Microcavity for the Determination of Solvent Solutions vol.18, pp.4, 2014, https://doi.org/10.3807/JOSK.2014.18.4.301