References
- J.K. Jeong et al., "Origin of Threshold Voltage Instability in Indium-Gallium-Zinc Oxide Thin Film Transistors," Appl. Phys. Lett., vol. 93, no. 12, 2008, pp. 123508.1-3
- S. Yang et al., "Improvement in the Photon-Induced Bias Stability of Al-Sn-Zn-In-O Thin Film Transistors by Adopting AlOx Passivation Layer," Appl. Phys. Lett., vol. 96, no. 21, 2010, pp. 213511.1-3.
- S.H.K. Park et al., "Channel Protection Layer Effect on the Performance of Oxide TFTs," ETRI J., vol. 31, no. 6, June 2009, pp. 653-659. https://doi.org/10.4218/etrij.09.1209.0043
- H. Omura et al., "First-Principles Study of Native Point Defects in Crystalline Indium Gallium Zinc Oxide," J. Appl. Phys., vol. 105, no. 9, 2009, pp. 093712.1-8.
- T. Kamiya, K. Nomura, and H. Hosono, "Electronic Structure of the Amorphous Oxide Semiconductor a-InGaZnO4-x:Tauc- Lorentz Optical Model and Origins of Subgap States," Phys. Status Solidi A, vol. 206, no. 5, 2008, pp. 860-867.
- T. Kamiya et al., "Electronic Structure of Oxygen Deficient Amorphous Oxide Semiconductor a-InGaZnO4-x: Optical Analyses and First-Principle Calculations," Phys. Status Solidi C, vol. 5, no. 9, 2008, pp. 3098-3100. https://doi.org/10.1002/pssc.200779300
- B. Ryu et al., "O-Vacancy as the Origin of Negative Bias Illumination Stress Instability in Amorphous In-Ga-Zn-O Thin Film Transistors," Appl. Phys. Lett., vol. 97, no. 2, 2010, pp. 022108.1-3
- J.H. Shin et al., "Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors," ETRI J., vol. 31, no. 1, Feb. 2009, pp. 62-64 https://doi.org/10.4218/etrij.09.0208.0266
- S.H.K. Park et al., "Transparent and Photo-Stable ZnO Thin-Film Transistors to Drive an Active Matrix Organic-Light-Emitting- Diode Display Panel," Adv. Mater., vol. 21, no. 6, 2009, pp. 678- 682. https://doi.org/10.1002/adma.200801470
- H. Oh et al., "Photon-Accelerated Negative Bias Instability Involving Subgap States Creation in Amorphous In-Ga-Zn-O Thin Film Transistor," Appl. Phys. Lett., vol. 97, no. 18, 2010, pp. 183502.1-3.
- H. Oh et al., "Enhanced Bias Illumination Stability of Oxide Thin Film Transistor through Insertion of Ultrathin Positive Charge Barrier into Active Material," Appl. Phys. Lett., vol. 99, no. 2, 2011, pp. 022105.1-3.
- H. Oh et al., "Transition of Dominant Instability Mechanism Depending on Negative Gate Bias under Illumination in Amorphous In-Ga-Zn-O Thin Film Transistor," Appl. Phys. Lett., vol. 98, no. 3, 2011, pp. 033504.1-3.
Cited by
- Low Temperature Characteristics of Schottky Barrier Single Electron and Single Hole Transistors vol.34, pp.6, 2012, https://doi.org/10.4218/etrij.12.0212.0194
- Tuned Optical Reflection Characteristics of Chemically-Treated Ti Substrates vol.34, pp.6, 2012, https://doi.org/10.4218/etrij.12.0212.0204
- Pressure Control Organic Vapor Deposition Methods for Fabricating Organic Thin-Film Transistors vol.34, pp.6, 2012, https://doi.org/10.4218/etrij.12.0212.0266
- Facile one-step synthesis of magnesium-doped ZnO nanoparticles: optical properties and their device applications vol.46, pp.28, 2012, https://doi.org/10.1088/0022-3727/46/28/285101
- Review of tailoring ZnO for optoelectronics through atomic layer deposition experimental variables vol.33, pp.7, 2012, https://doi.org/10.1080/02670836.2016.1198578
- Highly Stable Atomic Layer Deposited Zinc Oxide Thin-Film Transistors Incorporating Triple O2 Annealing vol.64, pp.10, 2012, https://doi.org/10.1109/ted.2017.2737552
- Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: Advances in research and development vol.36, pp.6, 2012, https://doi.org/10.1116/1.5047237
- Complementary Hybrid Semiconducting Superlattices with Multiple Channels and Mutual Stabilization vol.20, pp.7, 2020, https://doi.org/10.1021/acs.nanolett.0c00859