참고문헌
-
S. Ito et al., "High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-
$TiO_{2}$ Photoanode," Chem. Commun., 2006, pp. 4004-4006. -
A.L. Linsebigler, G. Lu, and J.T. Yates, Jr., "Photocatalysis on
$TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., vol. 95, 1995, pp. 735-758. https://doi.org/10.1021/cr00035a013 -
G.K. Mor et al., "A Review on Highly Ordered, Vertically Oriented
$TiO_2$ Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications," Solar Energy Mat. Solar Cells, vol. 90, 2006, pp. 2011-2075. https://doi.org/10.1016/j.solmat.2006.04.007 -
J.H. Park, S. Kim, and A.J. Bard, "Novel Carbon-Doped
$TiO_2$ Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting," Nano Lett., vol. 6, 2006, pp. 24-28. https://doi.org/10.1021/nl051807y - M. Poullou et al., "Titanium Wave-like Surface Microstructure for Multiple Reflections in Solar Cell Substrates Prepared by an All-Solution Process," Scripta Materialia, vol. 62, 2010, pp. 411-414. https://doi.org/10.1016/j.scriptamat.2009.12.003
-
S. Ito et al., "High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-
$TiO_2$ Electrode Thickness," Adv. Mat., vol. 18, 2006, pp. 1202-1205. https://doi.org/10.1002/adma.200502540 - H.-G. Yun et al., "Effect of Increased Surface Area of Stainless Steel Substrates on the Efficiency of Dye-Sensitized Solar Cells," Appl. Phy. Lett., vol. 93, 2008, 133311. https://doi.org/10.1063/1.2996017
- H.C. Oh et al., "Improved Stability of Atomic Layer Deposited ZnO Thin Film Transistor by Intercycle Oxidation," ETRI J., vol. 34, no. 2, Apr. 2012, pp. 280-283. https://doi.org/10.4218/etrij.12.0211.0186
- E.M.M. Sutter and G.J. Goetz-Grandmont, "The Behavior of Titanium in Nitric-Hydrofluoric Acid Solutions," Corro. Sci., vol. 30, 1990, pp. 461-476. https://doi.org/10.1016/0010-938X(90)90051-6
-
P.R.F. Barnes et al., "The Influence of Substrate Etching on the Photoelectrochemical Performance of Thermally Oxidized
$TiO_2$ Films," J. Electrochem. Soc., vol. 154, 2007, pp. H249-H257. https://doi.org/10.1149/1.2432076 - H.-G. Yun, B.-S. Bae, and M.G. Kang, "A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye-Sensitized Solar Cells," Adv. Energy Mater., vol. 1, no. 3, May 2011, pp. 337-342. https://doi.org/10.1002/aenm.201000044
- W.-Y. Kwong, "High System Performance with Plasmonic Waveguides and Functional Devices," ETRI J., vol. 32, no. 2, Apr. 2010, pp. 319-326. https://doi.org/10.4218/etrij.10.0109.0173
- A. Tarniowy, R. Mania, and M. Rekas, "The Effect of Thermal Treatment on the Structure, Optical, and Electrical Properties of Amorphous Titanium Nitride Thin Films," Thin Solid Films, vol. 311, 1997, pp. 93-100.
- G. Jerkiewicz, H. Strzelecki, and A. Wieckowski, "A New Procedure of Formation of Multicolor Passive Films on Titanium: Compositional Depth Profile Analysis," Langmuir, vol. 12, 1996, pp. 1005-1010. https://doi.org/10.1021/la940578k
- J.-L. Delplancke et al., "Self-Colour Anodizing of Titanium," Surface Tech., vol. 16, 1982, pp. 153-162. https://doi.org/10.1016/0376-4583(82)90033-4
- G.B. Airy, Mathematical Tracts on the Lunar and Planetary Theories, the Figure of the Earth, Precession and Nutation, the Calculus of Variations, and the Undulatory Theory of Optics, 2nd ed., Cambridge, UK: University of Cambridge (for J. & J.J. Deighton), 1831, p. 381.
- S. Hrapovic et al., "Morphology, Chemical Composition, and Electrochemical Characteristics of Colored Titanium Passive Layers," Langmuir, vol. 17, 2001, pp. 3051-3060. https://doi.org/10.1021/la001694s
- S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films, London: Oxford at the Clarendon Press, 1949, ch. 2.
피인용 문헌
- Influence of light incident angle on reflectance spectra of metals processed by color laser marking technology vol.49, pp.2, 2012, https://doi.org/10.1007/s11082-016-0876-4