DOI QR코드

DOI QR Code

기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 1.5TiAl-Al2O3 복합재료 제조 및 기계적 특성

Mechanical Properties and Fabrication of Nanostructured 1.5TiAl-Al2O3 Composite by Pulsed Current Activated Sintering

  • Kim, Won-Baek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Wang, Hee-Ji (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Roh, Ki-Min (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Lim, Jae-Won (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
  • 투고 : 2011.09.05
  • 발행 : 2012.05.25

초록

Nano-powders of 1.5TiAl and $Al_2O_3$ were synthesized from $1.5TiO_2$ and 3Al powders by high energy ball milling. Nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and 1.5TiAl. The relative density of the composite was 99.5%. The average hardness and fracture toughness values obtained were $1250kg/mm^2$ and $10MPa{\cdot}m^{1/2}$, respectively.

키워드

과제정보

연구 과제번호 : 티타늄계 합금 스크랩의 불순물 제어 및 활용기술 개발

연구 과제 주관 기관 : 한국지질자원연구원, 한국에너지기술평가원(KETEP)

참고문헌

  1. Wu X. Intermetallics 14, 1114 (2006). https://doi.org/10.1016/j.intermet.2005.10.019
  2. Ai Taotao, Chinese Journal of Aeronautics 21, 559 (2008). https://doi.org/10.1016/S1000-9361(08)60174-0
  3. S. L. Xiao, J. Tian, L. J. Xu, Y. Y. Chen, H. B. Yu, and J. C. Han, Trans. Nonferrous Met. Soc. China 19, 1423 (2009). https://doi.org/10.1016/S1003-6326(09)60044-3
  4. D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloys & Compounds 395, 174 (2005). https://doi.org/10.1016/j.jallcom.2004.10.072
  5. Z. W. Li, W. Gao, D. L. Zhang, and Z. H. Cai, Corros. Sci. 46, 1997 (2004). https://doi.org/10.1016/j.corsci.2003.10.026
  6. M. F. Ashby and D. R. H. Jones, Engineering Materials 1 (International Series on Materials Science and Technology), Vol. 34, Pergamon Press, Oxford, (1986).
  7. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  8. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  9. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  10. Z. Fang and J.W. Eason, Int. J. Refrac. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  11. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  12. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean. J. Met. Mater. 49, 231 (2011). https://doi.org/10.3365/KJMM.2011.49.3.231
  13. H. S. Kang, I. Y. Ko, J. K.Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011). https://doi.org/10.1007/s12540-011-0208-y
  14. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  15. O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
  16. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  17. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  18. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  19. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  20. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  21. O. Yeheskel and M. P. Dariel, Mater. Sci. Eng. A 354, 344 (2003). https://doi.org/10.1016/S0921-5093(03)00037-6