DOI QR코드

DOI QR Code

G91강 저주파 피로균열 성장에 미치는 온도와 응력비의 영향

Effects of Temperature and Stress Ratio on Low-Cycle Fatigue Crack Growth of G91 Steel

  • 김종범 (한국원자력연구원) ;
  • 황수경 (성균관대학교 기계공학부, 재료강도 및 계산생명공학 실험실) ;
  • 김범준 (성균관대학교 기계공학부, 재료강도 및 계산생명공학 실험실) ;
  • 이종훈 (성균관대학교 기계공학부, 재료강도 및 계산생명공학 실험실) ;
  • 박창규 (한국원자력연구원) ;
  • 이형연 (한국원자력연구원) ;
  • 김문기 (성균관대학교 기계공학부, 재료강도 및 계산생명공학 실험실) ;
  • 임병수 (성균관대학교 기계공학부, 재료강도 및 계산생명공학 실험실)
  • Kim, Jong Bum (Korea Atomic Energy Research Institute) ;
  • Hwang, Soo-Kyung (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Bum Joon (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Jong Hoon (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University) ;
  • Park, Chang Gyu (Korea Atomic Energy Research Institute) ;
  • Lee, Hyeong Yeon (Korea Atomic Energy Research Institute) ;
  • Kim, Moon Ki (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lim, Byeong Soo (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
  • 투고 : 2012.01.12
  • 발행 : 2012.05.25

초록

9-12% Cr steels have been used in thermal power plants which repeat start and stop operations. Major factors of fatigue life are temperature, frequency, stress ratio, holding time, microstructure, and environment. Normally, fatigue life decreases at high temperature, low frequency, high stress ratio, and long holding time conditions. A Mod.9Cr-1Mo steel, called G91, was developed at ORNL (Oak Ridge National Laboratory, USA) and was adopted as a high-temperature structural material in the ASME Code in 2004. However, its low-cycle fatigue and fatigue crack growth characteristics have been rarely studied. In this work, we have investigated the low-cycle fatigue crack growth behaviors of G91 steel under various test conditions in terms of temperature and stress ratio. As temperature and stress ratio increase, the crack growth rate becomes faster and striation distance also increases. On the other hand, the number of branch cracks decreases.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. S. H. Kim, Elevated temperature properties of ferritic/martensitic steels for application to future nucear reators, p.1, KAERI, Korea (2005).
  2. B. Vitalis, Advances in Materials Technology for Fossil Power Plants Proceedings form the Fifth International Conference, p. 969, Florida, USA (2007).
  3. D. C. Yuk, KJPE 1, 17(2005).
  4. MEST, White paper on nuclear safety, p.5, KINS. Korea (2007).
  5. A. K. Khare, Ferritic Steels For High-temperature Applications, p.1983, America Society for Metals, USA (1981).
  6. W. G. Kim, J. Y. Park, S. N. Yin, D. W. Kim, J. Y. Park, and S. J. Kim, Korean J. Met. Mater. 49, 275 (2011). https://doi.org/10.3365/KJMM.2011.49.4.275
  7. W. G. Kim, S. H. Kim, and C. B. Lee, Met. Mater. Int. 17, 497 (2011). https://doi.org/10.1007/s12540-011-0630-1
  8. Use of 10CrMoVNb91(P91/T91)for power station and boiler, Mannesmann Company, Duisburg, Germany (1995).
  9. S. C. Chetal, V. Balasubramaniyan, P. Chellapandi, P. Mohanakrishnan, P. Puthiyavinayagam, C. Pillai, S. Raghupathy, and T. Shanmugham, Nucl. Eng. Des. 236, 852 (2006). https://doi.org/10.1016/j.nucengdes.2005.09.025
  10. D. H. Hahn, J. Chang, Y. I. Kim, C. B. Lee, S. O. Kim, J. H. Lee, K. W. Ha, B. H. Kim, and Y. B. Lee, NET 41, 427 (2009). https://doi.org/10.5516/NET.2009.41.4.427
  11. D. Chen, C. J. Gilbert, X. F. Zhang, and R. O. Ritchie, Acta Mater. 48 (2000).
  12. C. Y. Jeong and S. W. Nam, J. Kor. Inst. Met & Mater. 38, 414 (2000).
  13. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, JOHN WILEY & SONS, INC, p.201, USA (1995).
  14. K. Bhanu, S. Rao, H. Schuster, and G. R. Halford, Metall. Mater. Trans. A, 27, 851 (1996). https://doi.org/10.1007/BF02649752
  15. G. E. Dieter, Mechanical Metallurgy, p.400, Mc Graw Hill, USA (1988).
  16. J. Zhao, Y. Miyashita, and Y. Mutoh, Int. J. Fatig. 22, 66 (2000).
  17. J, Aktaa and M. Lerch, J. Nucl. Mater. 353, 101 (2006). https://doi.org/10.1016/j.jnucmat.2006.03.009
  18. H. Ghonem, T. Nicholas, and A. Pineau, FFEMS. 16, 565 (1993).
  19. P. K. Liaw, A.Sexena, V. P. Swaminathan, and T. T.Shih, Metall. Mater. Trans A 14, 1631 (1982).
  20. G. Onofrio, G. A. Osinkolu and M. Marchionni, Int. J. Fatig. 23, 887 (2001). https://doi.org/10.1016/S0142-1123(01)00053-6
  21. G. Onofrio., G. A. Osinkolu, and M. Marchionni, Int. J. Fatig. 26, 203 (2004). https://doi.org/10.1016/S0142-1123(03)00170-1
  22. H. B. Jeon and W. J. Park, KSME Spring Conference Proceeding, p. 691, Korea (2008).
  23. C. Laird, ASTM STP 14, 131 (1967).
  24. J. C. McMillan and R. M. N. Pelloux, ASTM STP 415, 505 (1967).
  25. C. Bathias and R. M. Pelloux, Met. Trans. 4, 1265 (1973). https://doi.org/10.1007/BF02644521
  26. N. A. Fleck, ASTM STP. 924,157 (1988).
  27. S. Suresh, Eng. Fract. Mech. 18, 577 (1983). https://doi.org/10.1016/0013-7944(83)90051-6
  28. W. M. Tomas, Eng. Fract. Mech. 23,1015 (1986). https://doi.org/10.1016/0013-7944(86)90145-1
  29. O. Vadar, Eng. Fract. Mech. 30, 325 (1988).
  30. G. R. Chanani, Eng. Fract. Mech . 9, 65 (1977). https://doi.org/10.1016/0013-7944(77)90052-2
  31. S. H. Song and Y. K. Kwon, J. of the KSPE. 3, (2002).
  32. S. H. Song and Y. K. Kwon, APCFS'93, p. 1141, Ibaraki. Japan (1993).