DOI QR코드

DOI QR Code

Hydrothermal Growth and Characterization of ZnO Nanostructures on R-plane Sapphire Substrates

R-plane Sapphire 기판에 수열합성법으로 제작된 ZnO 나노구조체의 성장 및 특성

  • Cho, Guan Sik (Department of Nano Engineering, Inje University) ;
  • Kim, Min Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Leem, Jae-Young (Department of Nano Engineering, Inje University)
  • 조관식 (인제대학교 나노공학부) ;
  • 김민수 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 임재영 (인제대학교 나노공학부)
  • Received : 2012.03.05
  • Published : 2012.08.25

Abstract

ZnO nanostructures were grown on R-plane sapphire substrates with seed layers annealed at different temperatures ranging from 600 to $800^{\circ}C$. The properties of the ZnO nanostructures were investigated by scanning electron microscopy, high-resolution X-ray diffraction, UV-visible spectrophotometer, and photoluminescence. For the as-prepared seed layers, ZnO nanorods and ZnO nanosheets were observed. However, only ZnO nanorods were grown when the annealing temperature was above $700^{\circ}C$. The crystal qualities of the ZnO nanostructures were enhanced when the seed layers were annealed at $700^{\circ}C$. In addition, the full width at half maximum (FWHM) of near-band-edge emission (NBE) peak was decreased from 139 to 129 meV by increasing the annealing temperature to $700^{\circ}C$. However, the FWHM was slightly increased again by a further increase in the annealing temperature. Optical transmittance in the UV region was almost zero, while that in the visible region was gradually increased as the annealing temperature increased to $700^{\circ}C$. The optical band gap of the ZnO nanostructures was increased as the annealing temperature increased to $700^{\circ}C$. It is found that the optical properties as well as the structural properties of the rod-shaped ZnO nanostructures grown on R-plane sapphire substrates by hydrothermal method are improved when the seed layers are annealed at $700^{\circ}C$.

Keywords

Acknowledgement

Supported by : 인제대학교

References

  1. Y. Ryu, T. Lee, J. A. Lubguban, H. W. White, B. Kim, Y. Park, and C. Youn, Appl. Phys. Lett. 88, 241108 (2006). https://doi.org/10.1063/1.2210452
  2. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998). https://doi.org/10.1063/1.121620
  3. J. Koo, M. Lee, J. Kang, C. Yoon, K. Kim, Y. Jeon, and S. Kim, Semicond. Sci. Technol. 25, 045010 (2010). https://doi.org/10.1088/0268-1242/25/4/045010
  4. H. Kim, J. Y. Moon, and H. S. Lee, Electron. Mater. Lett. 7, 59 (2011). https://doi.org/10.1007/s13391-011-0309-2
  5. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). https://doi.org/10.1063/1.1587878
  6. Y. J. Xing, Z. H. Xi, Z. Q. Xue. X. D. Zhang, J. H. Song, R. M. Wang, J. Xu. Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys. Lett. 83, 1689 (2003). https://doi.org/10.1063/1.1605808
  7. B. W. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002). https://doi.org/10.1002/adma.200290015
  8. J. S. Lee, K. Park, M. I. Kang, I. W. Park, S. W. Kim, W. K. Chom, H. S. Han, and S. Kim, J. Cryst. Growth 254, 423 (2003). https://doi.org/10.1016/S0022-0248(03)01197-7
  9. Q. X. Zhao, P. Klason, and M. Willander, Appl. Phys. A Mater. Sci. Process. 88, 27 (2007). https://doi.org/10.1007/s00339-007-3958-0
  10. P. Yang, H. Yan, s. Mao, R. Russo, J. Johnson, R. Saykally, Nathan, Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater. 12, 323 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  11. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004). https://doi.org/10.1016/j.cplett.2004.07.110
  12. J. Wu and S. C. Liu, Adv. Mater. 14, 215 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  13. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002). https://doi.org/10.1063/1.1482800
  14. B. Liu, and H. C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003). https://doi.org/10.1021/ja0299452
  15. S. S. Kim and B. T. Lee, Thin Solid Films 446, 307 (2004). https://doi.org/10.1016/j.tsf.2003.09.057
  16. S. W. Xue, X. T. Zu, L. X. Shao, Z. L. Yuan, W. G. Zheng, X. D. Jiang, and H. Deng, J. Alloy Compd. 458, 569 (2008). https://doi.org/10.1016/j.jallcom.2007.04.239
  17. Q. Li, K. Cheng, W. Weng, C. Song, P. Du, G. Shen, and G. Han, Nanoscale Res. Lett. 6, 477 (2011). https://doi.org/10.1186/1556-276X-6-477
  18. B. Cao and W. Cai, J. Phys. Chem. C 112, 680 (2008). https://doi.org/10.1021/jp076870l
  19. M. Wang, J. Wang, W. Chen, Y. Cui, and L. Wang, Mater. Chem. Phys. 97, 219 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.072
  20. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, J. Appl. Phys. 105, 089902 (2009). https://doi.org/10.1063/1.3112042
  21. K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys. 81, 7764 (1997). https://doi.org/10.1063/1.365556
  22. M. Girtan and G. Folcher, Surf. Coat. Technol. 172, 242 (2003). https://doi.org/10.1016/S0257-8972(03)00334-7
  23. F. Urbach, Phys. Rev. 92, 1324 (1953).