DOI QR코드

DOI QR Code

Characterization of Microstructure, Hardness and Oxidation Behavior of Carbon Steels Hot Dipped in Al and Al-1 at% Si Molten Baths

  • Trung, Trinh Van (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Sun Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Min Jung (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Seul Ki (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Bong, Sung Jun (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 투고 : 2012.03.03
  • 발행 : 2012.08.25

초록

Medium carbon steel was aluminized by hot dipping into molten Al or Al-1 at% Si baths. After hot-dipping in these baths, a thin Al-rich topcoat and a thick alloy layer rich in $Al_5Fe_2$ formed on the surface. A small amount of FeAl and $Al_3Fe$ was incorporated in the alloy layer. Silicon from the Al-1 at% Si bath was uniformly distributed throughout the entire coating. The hot dipping increased the microhardness of the steel by about 8 times. Heating at $700-1000^{\circ}C$, however, decreased the microhardness through interdiffusion between the coating and the substrate. The oxidation at $700-1000^{\circ}C$ in air formed a thin protective ${\alpha}-Al_2O_3$ layer, which provided good oxidation resistance. Silicon was oxidized to amorphous silica, exhibiting a glassy oxide surface.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

참고문헌

  1. A. Bahadur and O. N. Mohanty, Mater. Trans. 11, 1053 (1991).
  2. K. Bouche, F. Barbier and A. Coulet, Mater. Sci. Eng. A 249, 167 (1998). https://doi.org/10.1016/S0921-5093(98)00573-5
  3. S. Kobayashi and T. Yakou, Mater. Sci. Eng. A 338, 44 (2002). https://doi.org/10.1016/S0921-5093(02)00053-9
  4. D. Wang, Z. Shi, and L. Zou, Appl. Surf. Sci. 214, 304 (2004).
  5. S. H. Hwang, J. H. Song, and Y. S. Kim, Mater. Sci. Eng. A 390, 437 (2005). https://doi.org/10.1016/j.msea.2004.08.062
  6. C. J. Wang and S. M. Chen, Surf. Coat. Technol. 200, 6601 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.031
  7. W. J. Cheng and C. J. Wang, Surf. Coat. Technol. 204, 824 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.061
  8. T. S. Shih and S. H. Tu, Mater. Sci. Eng. A 454, 349 (2007).
  9. G. H. Awan and F. U. Hasan, Mater. Sci. Eng. A 472, 157 (2008). https://doi.org/10.1016/j.msea.2007.03.013
  10. Y. Y. Chang, C. C. Tsaur, and J. C. Rock, Surf. Coat. Technol. 200, 6588 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.038
  11. W. J. Cheng, Y. Y. Chang, and C. J. Wang, Surf. Coat. Technol. 203, 401 (2008). https://doi.org/10.1016/j.surfcoat.2008.07.030
  12. E. Frutos, J. L. Gonzalez-Carrasco, C. Capdevila, J. A. Jimenez, and Y. Houbaert, Surf. Coat. Technol. 203, 2916 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.015
  13. K. A. Nazari and S. G. Shabestari, J. Alloys Compd. 478, 523 (2009). https://doi.org/10.1016/j.jallcom.2008.11.127
  14. D. Wang and Z. Shi, Appl. Surf. Sci. 227, 255 (2004). https://doi.org/10.1016/j.apsusc.2003.11.076
  15. H. Glasbrenner, E. Nold, and Z. Voss, J. Nucl. Mater. 249, 39 (1997). https://doi.org/10.1016/S0022-3115(97)00186-4
  16. M. B. Lin and C. J. Wang, Surf. Coat. Technol. 205, 1220 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.047
  17. C. W. Su, J. W. Lee, C. S. Wang, C. G. Chao, and T. F. Liu, Surf. Coat. Technol. 202, 1847 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.011
  18. J. H. Kim, J. P. Wang, and C. Y. Kang, Met. Mater. Int. 17, 931 (2011). https://doi.org/10.1007/s12540-011-6010-z
  19. J. Prohaszka, J. Dobranszky, and P. J. Szabo, X-ray Spectrom. 28, 233 (1999). https://doi.org/10.1002/(SICI)1097-4539(199907/08)28:4<233::AID-XRS340>3.0.CO;2-Q