DOI QR코드

DOI QR Code

고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 II: 중력주조, 유동성평가

A Study on Development of High Strength Al-Zn Based Alloy for Die Casting II: Evaluation of Fluidity and Gravity Casting

  • 신상수 (한국생산기술연구원 친환경청정기술센터) ;
  • 임영훈 (애니캐스팅 기술연구소) ;
  • 김억수 (한국생산기술연구원 친환경청정기술센터) ;
  • 임경묵 (한국생산기술연구원 친환경청정기술센터)
  • Shin, Sang-Soo (Green Technology Center, Korea Institute of Industrial Technology) ;
  • Lim, Young-Hoon (AnyCasting Co., Ltd.) ;
  • Kim, Eok-Soo (Green Technology Center, Korea Institute of Industrial Technology) ;
  • Lim, Kyung-Mook (Green Technology Center, Korea Institute of Industrial Technology)
  • 투고 : 2011.12.23
  • 발행 : 2012.07.25

초록

In this study, we evaluated the fluidity of the Al-Zn based alloys which exhibit excellent mechanical properties. We conducted computer simulations of fluid flow using the results of DSC, DTA analysis and Java-based Materials Properties software (J. Mat. Pro). Such computer simulations were then compared with the results obtained from experimental observations. The computer simulation results and the experimental results were very similar in fluidity length. It was found that the fluidity length of Al-Zn alloys is improved by increasing the Zn content while decreasing the solidus temperature of an alloy. In addition, we elucidate the effect of Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al-xZn3Cu0.4Si0.3Fe) x=20, 30, 40, and 45 wt% alloys fabricated by gravity casting.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. K. Venkatesan and R. Shivpuri, J. Mater. Eng. Perform. 4, 166 (1995). https://doi.org/10.1007/BF02664110
  2. A. Street, The Die Casting Books, Portcullis Press Ltd. 3-16, 625 (1977).
  3. A. Kaye and A. Street, Die Casting Metallurgy, p. 231 Butterworths, London. (1982).
  4. E. S. Kim, J. Y. Park, E. K. Jeon, and I. M. Park, J. Kor. Foundrymen's Soc. 27, 13 (2007).
  5. E. J. Vinarcik: Jhon wiily & Sons, Inc. USA. 12 (2003).
  6. K. Y. Kim and M. S. Yi, J. Kor. Foundrymen's Soc. 17, 527 (1997).
  7. K. T. Kim, J. Kor. Foundrymen's Soc. 31, 101 (2011). https://doi.org/10.7777/jkfs.2011.31.3.101
  8. R. Kimura, H. Hatayama, K. Shinozaki, I. Murashima, J. Asada, and M. Yoshida, J. Mat. Pro. Tec. 209, 210 (2009). https://doi.org/10.1016/j.jmatprotec.2008.01.053
  9. S. S. Shin, G. Y. Yeom, E. S. Kim, and K. M. Lim, Korean J. Met. Mater. 48, 936 (2010). https://doi.org/10.3365/KJMM.2010.48.10.936
  10. Kondic V. Foundry Trade J. 88, 691 (1950).
  11. H. Chen, X. Xin, D.Y. Dong, and Y. P. Ren, Acta. Meta. Sin 17, 269 (2004).
  12. Y. Kimura, T. Mishima, S. Umekawa, and T. Suzuki, J. Mater. Sci. 19, 3107 (1984). https://doi.org/10.1007/BF01026990
  13. Portevin A and Bastein P. Proceedings, Institute of Metals. 54, 45 (1934).
  14. MC Flemings, Brit Foundry. 57, 312 (1964).
  15. MC Flemings, E. Niyama, and H. F. Taylor. Trans AFS. 625 (1961).
  16. Q. Han and H. Xu, Scripta Mat. 53, 7 (2005). https://doi.org/10.1016/j.scriptamat.2005.03.025
  17. Q. Han and S. Viswanthan, Mat. Sci. Eng. A. 364, 48 (2004). https://doi.org/10.1016/j.msea.2003.06.002