DOI QR코드

DOI QR Code

Combustion Synthesis of YAG:Ce Phosphor with Teflon

Teflon을 이용한 YAG:Ce 형광체 합성

  • 연정운 (충남대학교 신소재공학과) ;
  • 원창환 (충남대학교 신소재공학과) ;
  • 원형일 (충남대학교 신소재공학과) ;
  • Received : 2011.12.27
  • Published : 2012.06.25

Abstract

YAG:Ce phosphor were prepared in a self-propagating high-temperature synthesis (SHS) using a $1.5Y_2O_3+2.5Al_2O_3+0.116CeO_2+3.0KClO_3+kCO(NH_2)_2+m(C_2F_4)_n$ precursor mixture. The heat for the combustion propagation was provided by the reaction of a $KClO_3+CO(NH_2)_2+(C_2F_4)n$ mixture. Pure-phase YAG phosphor was synthesized at the combustion temperature of $1210^{\circ}C$ from k=3.6 mole and m=0.3 mole. The as-prepared YAG:Ce phosphor had a particle size of $2-10{\mu}m$. The addition of Teflon to the precursor mixture increased the YAG particle size and its luminescent intensity. The emission peak of the YAG phosphor was blue-shifted with an increase of Teflon concentration.

Keywords

References

  1. X. Li, H. Liu, J. Wang, H. Cui, X. Zhang, and F. Hana, Mater. Sci. Eng. A 379, 347 (2004). https://doi.org/10.1016/j.msea.2004.03.014
  2. D. Ravichandran, R. Roy, A. G. Chakhovskoi, C. E. Hunt, W. B. White, and S. Erdei, J. Lumin 71, 291 (1997). https://doi.org/10.1016/S0022-2313(96)00137-8
  3. Y. Zhou, J. Lin, M. Yu, S. Wang, and H. Zhang, Mater. Lett. 56, 328 (2002).
  4. G. W. Berkstresser, J. Shmulovich, T. C. D. Huo, and G. Matulis, J. Electrochem. Soc. 134, 2624 (1987). https://doi.org/10.1149/1.2100256
  5. Y. D. Huh, Y. S. Cho, and Y. R. Do, Bull. Korean Chem. Soc. 23, 1435 (2002). https://doi.org/10.5012/bkcs.2002.23.10.1435
  6. W. M. Yen and M. J. Weber, Inorganic phosphors, CRC Press, Canada (2004).
  7. K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hess, J. Am. Ceram. Soc. 77, 2866 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04516.x
  8. Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama, J. Phy. Chem. Solids 60, 1855 (1999). https://doi.org/10.1016/S0022-3697(99)00191-2
  9. I. Matsubara, M. Parathaman, S. W. Allison, M. R. Cates, D. L. Beshears, and D. E. Holocomb, Mat. Res. Bull. 35, 217 (2000). https://doi.org/10.1016/S0025-5408(00)00202-6
  10. X. Li, H. Liu, J. Wang, X. Zhang, and H. Cui, Opt. Mater. 25, 407 (2004). https://doi.org/10.1016/j.optmat.2003.10.001
  11. Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, and K. Arai, Mater. Res. Bull. 38, 1257 (2003). https://doi.org/10.1016/S0025-5408(03)00088-6
  12. J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, and L. P. Huang, Mate. Res. Bull. 38, 1249 (2003). https://doi.org/10.1016/S0025-5408(03)00119-3
  13. Y. D. Hahn and I. H. Song, Bull. Korean Chem. Soc. 10, 162 (1995).
  14. Z. A. Munir, Metall. Trans. 23A, 7 (1992).
  15. A. Makino and C. K. Low, J. Am. Ceram. Soc. 77, 778 (1984).