DOI QR코드

DOI QR Code

Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship

저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향

  • Kim, Do Kyun (The Ship and Offshore Research Institute, Pusan National University) ;
  • Park, Dae Kyeom (The Ship and Offshore Research Institute, Pusan National University) ;
  • Seo, Jung Kwan (The Ship and Offshore Research Institute, Pusan National University) ;
  • Paik, Jeom Kee (The Ship and Offshore Research Institute, Pusan National University) ;
  • Kim, Bong Ju (The Ship and Offshore Research Institute, Pusan National University)
  • 김도균 (부산대학교 선박해양플랜트기술연구원) ;
  • 박대겸 (부산대학교 선박해양플랜트기술연구원) ;
  • 서정관 (부산대학교 선박해양플랜트기술연구원) ;
  • 백점기 (부산대학교 선박해양플랜트기술연구원) ;
  • 김봉주 (부산대학교 선박해양플랜트기술연구원)
  • Received : 2011.12.29
  • Published : 2012.06.25

Abstract

This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. WIKIPEDIA, Arctic, http://en.wikipedia.org/wiki/Arctic (2011).
  2. WIKIPEDIA, LNG, http://en.wikipedia.org/wiki/LNG (2011).
  3. D. K. Park, D. K. Kim, B. J. Kim, J. K. Seo, and J. K. Paik, International Conference on Thin Walled Structures, ICTWS, Timisoara, Romania (2011).
  4. J. K. Paik, B. J. Kim, D. K. Park, and B. S. Jang, Int. J. Impact Eng. 38, 13 (2011). https://doi.org/10.1016/j.ijimpeng.2010.08.004
  5. J. K. Paik, B. J. Kim, S. K. Park, D. K. Kim, C. H. Park, D. H. Park, and B. S. Jang, International Conference on Ocean, Offshore and Arctic Engineering, ASME, Shanghai, China (2010).
  6. IACS. Requirements concerning POLAR CLASS, International Association of Classification Societies, London, UK (2011).
  7. ASTM A131/A131M-08, ASTM International (2008).
  8. ASTM A370-11, ASTM International (2011).
  9. ASTM E8/E8M-09, ASTM International (2009).
  10. ISO15579:2000, International Organization for Standardization (2000).
  11. J. K. Paik, D. K. Kim, D. H. Park, H. B. Kim, A. E. Mansour, and J. B. Caldwell, Proceedings of Advances in Marine Structures, eds. Guedes Soares & Fricke, pp.187-202, Taylor & Francis Group, London, UK (2011).
  12. J. K. Paik and Thayamballi, Ultimate Limit State Design of Steel-Plated Structures, John Wiley & Sons, Chichester, UK (2003).
  13. O. F. Hughes and J. K. Paik, Ship structural analysis and design, The Society of Naval Architects and Marine Engineers, New Jersey, USA (2010).
  14. ISF, International Shipping Federation, http://www.marisec.org (2011).
  15. ALPS/HULL. A computer program for progressive collapse analysis of ship hulls, Advanced Technology Center, DRS C3 Systems, Inc., MD, USA (2011).
  16. KSNA. Ship design handbook, Kansai Soc Naval Arch, Osaka, Japan (1983).