DOI QR코드

DOI QR Code

Fabrication of Nanostructured MoSi2-TaSi2 Composite by High-Frequency Induction Heating and its Mechanical Properties

고주파유도 가열에 의한 나노구조 MoSi2-TaSi2 복합재료 제조 및 기계적 특성

  • Ko, In-Yong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • 고인용 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 박나라 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발 연구센터)
  • Received : 2012.01.03
  • Published : 2012.05.25

Abstract

Nanopowders of Mo, Ta and Si were made by high-energy ball milling. A dense nanostructured $MoSi_2-TaSi_2$ composite was sintered by the high-frequency induction heated combustion method within 2 minutes from mechanically activated powder of Mo, Ta and Si. A highly dense $MoSi_2-TaSi_2$ composite was produced under simultaneous application of a 80 MPa pressure and the induced current. Mechanical properties and microstucture were investigated. The hardness and fracture toughness of the $MoSi_2-TaSi_2$ composite were $1200kg/mm^2$ and $3.5MPa.m^{1/2}$, respectively. The mechanical properties were higher than those of monolithic $MoSi_2$.

Keywords

Acknowledgement

Supported by : 한국연구재단, 한국에너지기술평가원(KETEP)

References

  1. D. Vojtech, D. Barbora, and T. Kubatik, Mater. Sci. Eng. A 361, 50 (2003). https://doi.org/10.1016/S0921-5093(03)00564-1
  2. R. Rosenkranz, G. Frommeyer, and W. Smarsly, Mater. Sci. Eng. A 152, 288 (1992). https://doi.org/10.1016/0921-5093(92)90081-B
  3. J. Milne, Instant Heat, Kinetic Metals Inc., Derby, Connecticut (1985).
  4. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity, IFI/Plenum, New York (1970).
  5. G. Sauthoff, Intermetallics, VCH Publishers, New York (1995).
  6. R. K. Wade and J. J. Petrovic, J. Am. Ceram. Soc. 75, 1682 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04246.x
  7. B.W. Lin and T. Iseki, Br. Ceram. Trans. J. 91, 1 (1992).
  8. Yutaka Ohya, Michael J. Hoffmann, and Günter Petzow, J. Am. Ceram. Soc. 75, 2479 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05600.x
  9. S. K. Bhaumik, C. Divakar, A. K. Singh, and G. S. Upadhyaya, Mater. Sci. Eng. A 279, 275 (2000). https://doi.org/10.1016/S0921-5093(99)00217-8
  10. D. K. Jang and R. Abbaschian, Kor. J. Mater. Res. 9, 92 (1999).
  11. H. Zhang, P. Chen, M. Wang, and X. Liu, Rare Metals 21, 304 (2002).
  12. D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloys & Compounds 395, 174 (2005). https://doi.org/10.1016/j.jallcom.2004.10.072
  13. J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  14. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  15. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  16. Z. Fang and J. W. Eason, Int. J. Refrac. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  17. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  18. I. Y. Ko, S. M. Chae, and I. J. Shon, Korean J. Met. Mater. 48, 417 (2010). https://doi.org/10.3365/KJMM.2010.48.05.417
  19. H. S. Kang, I. Y. Ko, J. K.Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Inst. 17, 57 (2011). https://doi.org/10.1007/s12540-011-0208-y
  20. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  21. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  22. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  23. J. R. Friedman, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  24. J. E. Garay, U. A. Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  25. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).