DOI QR코드

DOI QR Code

Corrosion of Fe-(10~40)%Cr Steels in Na2SO4 Salts at 800~900℃

Fe-(10~40%)Cr강의 800~900℃에서의 Na2SO4 염에서의 부식

  • Kim, Seul Ki (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Jae Ho (Hyundai Hysco) ;
  • Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 김슬기 (성균관대학교 신소재공학부) ;
  • 이재호 (현대하이스코 기술연구소) ;
  • 이동복 (성균관대학교 신소재공학부)
  • Received : 2011.11.17
  • Published : 2012.05.25

Abstract

Fe-(10, 20, 30, 40) wt%Cr alloys were corroded in $Na_2SO_4$ salts ($m.p.=884^{\circ}C$) at $800{\sim}900^{\circ}C$ for 3-300 hrs. Their corrosion resistance increased with an increase in Cr content owing to the formation of slowly growing $Cr_2O_3$. During corrosion, $Na_2SO_4$ dissociated and reacted with the alloys to form $Cr_2O_3$ and $Fe_2O_3$. Since $Fe_2O_3$ dissolved fast into the salts, most of the scales consisted primarily of $Cr_2O_3$. Inside the scale, a small amount of sulfides also existed. The oxidation, dissolution and detachment of the formed scales occurred significantly.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. H. S. Lee, J. S. Jung, and E. H. Kim, J. Kor. Inst. Met. & Mater. 47, 99 (2009).
  2. H. S. Lee, J. S. Jung, K. B. Yoo, and E. H. Kim, Korean J. Met. Mater. 48, 277 (2010). https://doi.org/10.3365/KJMM.2010.48.04.277
  3. D. Young, High Temperature Oxidation and Corrosion of Metals, p. 383, Elsevier, USA (2008).
  4. W. Gao and Z. Li, Developments in High-Temperature Corrosion and Protection of Materials, p.164, Woodhead Publishing Limited, Cambridge, UK (2008).
  5. G. Y. Lai, High-Temperature Corrosion and Materials Applications, p.249, ASM International, USA (2007).
  6. N. Birks, G. H. Meier, and F. S. Pettit, High-Temperature Oxidation of Metals, p.205, Cambridge University Press, UK (2006).
  7. F. S. Pettit, and C. S. Giggins, Superalloys II, (eds. C. T. Sims, N. S. Stoloff, W. C. Hagel), p.327, John Wiley & Sons, NY (1987).
  8. K. Y. Kim, J. Corros. Soc. Kor. 27, 289 (1998).
  9. R. A. Rapp, Mater. Sci. Eng. 87, 319 (1987). https://doi.org/10.1016/0025-5416(87)90394-6
  10. N. Eliaz, G. Shemesh, and R. M. Latanision. Eng. Fail. Anal. 9, 31 (2002). https://doi.org/10.1016/S1350-6307(00)00035-2
  11. S. Prakash, Developments in High Temperature Corrosion and Protection of Materials (eds. W. Gao and Z. Li), p.164, CRC press, England (2008).
  12. F. Pettit. Oxid Met. 76, 1 (2011). https://doi.org/10.1007/s11085-011-9254-6
  13. T. S. Sidhu, A. Malik, S. Prakash, and R. D. Agrawal, Intl. J. Phys. Sci. 1, 27 (2002).
  14. G. H. Meier. Mater. Sci. Eng. A. 120, 1 (1989).
  15. D. N. H. Trafford and D. P. Whittle. Corros. Sci. 20, 509 (1980). https://doi.org/10.1016/0010-938X(80)90068-2