DOI QR코드

DOI QR Code

염료감응형 태양전지용 나노두께 Pt와 Ru 상대전극의 물성

Property of Counter Electrode with Pt and Ru Catalyst Films for Dye-Sensitized Solar Cell

  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 유병관 (서울시립대학교 신소재공학과) ;
  • 유기천 (한국과학기술연구원) ;
  • 고민재 (한국과학기술연구원) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Yu, Byungkwan (Department of Materials Science and Engineering, University of Seoul) ;
  • Yoo, Kicheon (Solar Cell Research Center, Natioinal Agenda Research Division, Korea Institute of Science and Technology(KIST)) ;
  • Ko, Min Jae (Solar Cell Research Center, Natioinal Agenda Research Division, Korea Institute of Science and Technology(KIST)) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 투고 : 2011.12.01
  • 발행 : 2012.03.25

초록

A ruthenium (Ru) catalytic layer and a conventional Pt layer were assessed as counter electrodes (CE) for dye sensitized solar cells (DSSCs). Ru films with different thicknesses of 34, 46, and 90 nm were deposited by atomic layer deposition (ALD). Pt layers with the same thicknesses were prepared by sputtering. $0.45cm^2$ DSSCs were prepared and their properties were characterized by FE-SEM, cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V). FE-SEM revealed that the crystallized Ru films and Pt films had been deposited quite conformally. CV showed that the catalytic activity of Pt was much greater than that of Ru. In addition, although the catalytic activity of Pt did not depend on the thickness, that of Ru showed an increase with increasing thickness. Impedance analysis revealed high charge transfer resistance at the Ru interface and a decrease with increasing Ru thickness, whereas Pt showed low resistance with no thickness dependence. Despite the relatively small catalytic activity of Ru, the I-V result revealed the average energy conversion efficiency of Ru and Pt to be 2.98% and 6.57%, respectively. These results suggest that Ru can be used as counter electrodes in DSSCs due to its extremely low temperature process compatibility.

키워드

과제정보

연구 과제 주관 기관 : 교육과학기술부

참고문헌

  1. M. Gratzel, Nature. 414, 338 (2001). https://doi.org/10.1038/35104607
  2. K. Kim, G. Lee, K. Yoo, D. Kim, J. Kim, and N. Park, J. of Photochem. Photobiol. A: Chemistry. 204, 144 (2009). https://doi.org/10.1016/j.jphotochem.2009.03.008
  3. J. Chang, J. Rhee, S. Im, Y. Lee, Y. Lee, H. Kim, S. Seok, Md. K. Nazeeruddin, and M. Gratzel, Nano Lett. 10, 2609 (2010). https://doi.org/10.1021/nl101322h
  4. K. Jiang, K. Manseki, Y. Yu, N.Masaki, K. Suzuki, Y. Song, and S. Yanagida, Adv. Funct. Mater. 19, 2481 (2009). https://doi.org/10.1002/adfm.200900283
  5. M. Gratzel, J. Photochem. Photobiol. A. 164 (2004).
  6. A. Kay and M. Gratzel, Sol. Energy Mater. Sol. Cells. 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  7. E. Olsen, G. Hagen, and S. E. Lindquist, Sol. Energy Mater. Sol. Cells. 63, 267 (2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  8. S. U. Lee, W. S. Choi, and B. Hong, Sol. Energy Mater. Sol. Cells. 94, 680 (2010). https://doi.org/10.1016/j.solmat.2009.11.030
  9. J. G. Nam, Y. J. Park, B. S. Kim, and J. S. Lee, Scr. Mater. 62, 148 (2010). https://doi.org/10.1016/j.scriptamat.2009.10.008
  10. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Pechy, and M. Gratzel, J. Electrochem. Soc. 153, 2255 (2006). https://doi.org/10.1149/1.2358087
  11. N. Bedford, C. Dablemont, G. Viau, P. Chupas, and V. Petkov, J. Phys. Chem. C. 111, 18214 (2007). https://doi.org/10.1021/jp0752062
  12. A. Salomonsson, R. M. Petoral, K. Uvdal, C. Aulin, P. Kall, L. Ojamae, M. Strand, M. Sanati, and A. L. Spetz, J. Nanopart. Res. 8, 899 (2006). https://doi.org/10.1007/s11051-005-9058-1
  13. S. F. Yin, B. Q. Xu, S. J. Wang, and C. T. Au, Appl. Catal. A. 301, 202 (2006). https://doi.org/10.1016/j.apcata.2005.12.005
  14. M. Tapajna, P. Písecny, R. Luptaka, K. Husekova, K. Fröhlich, L. Harmatha, J. C. Hooker, F. Roozeboom, and J. Jergele, Mater. Sci. Semicond. Process. 7, 271 (2004). https://doi.org/10.1016/j.mssp.2004.09.011
  15. S. J. Park, W. H. Kim, H. B. R. Lee, W. J. Maeng, and H. Kim, Microelectron. Eng. 85, 39 (2008). https://doi.org/10.1016/j.mee.2007.01.239
  16. D. Chakraborty, H. Bischoff, I. Chorkendorff, and T. Johannessen, J. Electrochem. Soc. 152, 2357 (2005). https://doi.org/10.1149/1.2109547
  17. E. E. Switzer and A. K. Datye, Top Catal. 46, 334 (2007). https://doi.org/10.1007/s11244-007-9008-5
  18. S. S. Yim, D. J. Lee, K. S. Kim, M. S. Lee, S. H. Kim, and K. B. Kim, Electrochem. and Solid-State Lett. 11, K89, (2008). https://doi.org/10.1149/1.2952432
  19. C. Thambidurai, Y. G. Kim, and J. L. Stickney, Electrochim. Acta. 53, 6157 (2008). https://doi.org/10.1016/j.electacta.2008.01.003
  20. S. H. Kwon, O. K. Kwon, J. H. Kim, H. R. Oh, K. H. Kim, and S.W. Kang, J. Electrochem. Soc. 155, H296 (2008). https://doi.org/10.1149/1.2868779
  21. C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, Electrochim. Acta. 53, 2890 (2008). https://doi.org/10.1016/j.electacta.2007.10.074