DOI QR코드

DOI QR Code

Ru employed as Counter Electrode for TCO-less Dye Sensitized Solar Cells

투명전도층이 없는 염료감응형 태양전지의 Ru 상대전극 연구

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Yoo, Kicheon (Solar Cell Center, Energy Division, Korea Institute of Science and Technology(KIST)) ;
  • Yu, Byungkwan (Department of Materials Science and Engineering, University of Seoul) ;
  • Han, Jeungjo (Department of Materials Science and Engineering, University of Seoul) ;
  • Ko, Minjae (Solar Cell Center, Energy Division, Korea Institute of Science and Technology(KIST)) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 유기천 (한국과학기술연구원) ;
  • 유병관 (서울시립대학교 신소재공학과) ;
  • 한정조 (서울시립대학교 신소재공학과) ;
  • 고민재 (한국과학기술연구원) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2011.11.01
  • Published : 2012.02.25

Abstract

A TCO-less ruthenium (Ru) catalytic layer on glass substrate instead of conventional Ru/TCO/ glass substrate was assessed as counter electrode (CE) material in dye sensitized solar cells (DSSCs) by examining the effect of the Ru thickness on the DSSC performance. Ru films with different thicknesses (34, 46, 69, and 90 nm) were deposited by atomic layer deposition (ALD) on glass substrates to replace both existing catalyst and electrode layer. In order to make our comparison, we also prepared an Ru catalytic layer by a similar method on FTO/glass substrate. Finally, we prepared the $0.45cm^2$ DSSC device the properties of the DSSCs were examined by cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V) method. CV measurements revealed an increase in catalytic activity with increasing film thickness. The charge transfer resistance at the interface between the electrolyte and Rudecreased with increasing Ru thickness. I-V results showed that the energy conversion efficiency increased up to 1.96%. Our results imply that TCO-less Ru/glass might perform as both catalyst and electrode layer when it is used in counter electrodes in DSSCs.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. M. Gratzel, Nature 414, 338 (2001). https://doi.org/10.1038/35104607
  2. B. O'Regan and M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  3. Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B 110, 25210 (2006). https://doi.org/10.1021/jp064256o
  4. M. Gratzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  5. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  6. Y. H. Luo, D. M. Li, and Q. B. Meng, Adv. Mater. 21, 4647 (2009). https://doi.org/10.1002/adma.200901078
  7. R. Jose, V. Thavasi, and S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009). https://doi.org/10.1111/j.1551-2916.2008.02870.x
  8. H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Cluster Science, 18, 141 (2007). https://doi.org/10.1007/s10876-006-0092-7
  9. N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc. 144, 876 (1997). https://doi.org/10.1149/1.1837502
  10. E.Olsen, G.Hagen, and S.E.Lindquist, Sol. Energ. Mater. Sol. C, 63, 267 (2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  11. A. Kay and M. Gratzel, Sol. Energ. Mater. Sol. C. 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  12. C. H. Tsai, S. Y. Hsu, C. Y. Lu, Y. T. Tsai, T. W. Huang, Y. F. Chen, Y. H. Jhang, and C. C. Wu, Organic Electronics, 2011.
  13. A. J. Hartmann, M. Neilson, R. N. Lamb, K. Watanabe, and J. F. Scott, Appl. Phys. A 70, 239 (2000). https://doi.org/10.1007/s003390050041
  14. N. Bedford, C. Dablemont, G. Viau, P. Chupas, and V. Petkov, J. Phys. Chem. C 111, 18214 (2007). https://doi.org/10.1021/jp0752062
  15. A. Salomonsson, R. M. Petoral, K. Uvdal, C. Aulin, P. Kall, L. Ojamae, M. Strand, M. Sanati, and A. L. Spetz, J. Nanopart. Res. 8, 899 (2006). https://doi.org/10.1007/s11051-005-9058-1
  16. S. F. Yin, B. Q. Xu, S. J. Wang, and C. T. Au, Appl. Catal. A 301, 202 (2006). https://doi.org/10.1016/j.apcata.2005.12.005
  17. T. K. Eom, W. Sari, K. J. Choi, W. C. Shin, J. H. Kim, D. J. Lee, K. B. Kim, H. Sohn, and S. H. Kim, Electrochem. Solid State Lett. 12, D85 (2009). https://doi.org/10.1149/1.3207867
  18. K. Lahtinen, P. Maydannik, P. Johansson, T. Kaariainena, D. C. Camerona, and J. Kuusipalo, Surf. Coating Tech. 205, 3916 (2011). https://doi.org/10.1016/j.surfcoat.2011.02.009
  19. P. Johansson, K. Lahtinen, J. Kuusipalo, T. Kaariainen, P. Maydannik, and D. Cameron, Atomic Layer Deposition Process for Barrier Applications of Flexible Packaging, Tappi 2010 PLACE Conference, TAPPI (2010).
  20. H. M. Kwon, D. W. Han, D. J. Kwak, and Y. M. Sung, Appl. Phys. 10, 172 (2010).
  21. Y. Kashiwa, Y. Yoshida, and S. Hayase, APL. 1, (2008).
  22. F. Z. Dahou, L. Cattin, J. Garnier, J. Ouerfelli, M. Morsli, G. Louarn, A. Bouteville, A. Khellil, and J. C. Bernede, Thin Solid Films. 518, 6117 (2010). https://doi.org/10.1016/j.tsf.2010.06.009
  23. K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, Chem. Lett. 32, 28 (2003) https://doi.org/10.1246/cl.2003.28
  24. B. Fan, X. Mei, K. Sun, and J. Ouyang, Appl, Phys, Lett. 93, 143103 (2008). https://doi.org/10.1063/1.2996270
  25. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Pechy, and M. Gratzel, J. Electrochem. Soc. 153, A2255 (2006). https://doi.org/10.1149/1.2358087
  26. X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008). https://doi.org/10.1021/nl072838r
  27. H. Choia, H. Kima, S. Hwanga, W. Choib, and M. Jeon, Sol. Energ. Mater. Sol. C. 95, 323 (2011) https://doi.org/10.1016/j.solmat.2010.04.044
  28. Y. H. Kim, H. W. Ryu, Y. R. Cho, and W. S. Sub, J. Kor. Inst. Met. & Mater. 44, 838 (2006).