DOI QR코드

DOI QR Code

LES를 이용한 몰드 내 탕면 변동 거동 수치해석 - 노즐 형상에 따른 진동 주파수 분석

Large Eddy Simulation of Fluctuating Mold Level - Effects of Nozzle Geometry on Oscillation Frequency

  • 투고 : 2011.05.16
  • 발행 : 2012.02.25

초록

High speed casting technology is an attractive method to increase the productivity of continuous casting. However, high speed casting causes flow instability of molten steel in a mold. In this study, Large Eddy Simulation (LES) has been performed to identify the characteristics of mold flow for various shapes of submerged entry nozzles. The LES code has been newly developed to efficiently compute the two-phase flow by using the Fractional Step Method (FSM) combined with the Volume of Fluid (VOF) method. The Immersed Boundary Method was used to implement the shape of the submerged entry nozzle. Three cases of discharge angle of the submerged entry nozzle were computed and compared. The current results shed light on improving shape design of a submerged entry nozzle.

키워드

과제정보

연구 과제 주관 기관 : POSCO

참고문헌

  1. J. E. Lee, S. H. Hahn, Y. J. Seok, C. Y. So, and J. K. Yoon, J. Kor. Inst. Met.& Mater. 34, 115 (1996).
  2. S. W. Lee, Y. S. Koo, and Y. K. Shin, J. Kor. Inst. Met.& Mater. 25, 233 (1987).
  3. K. H. Moon, C. H. Lee, P. R. Cha, U S. Yoon, and J. K. Yoon, J. Kor. Inst. Met.& Mater. 36, 1734 (1998).
  4. H. Bai and B. G. Thomas, Metall. Mater. Trans. B 32, 253 (2001). https://doi.org/10.1007/s11663-001-0049-z
  5. B. G. Thomas, L. J. Mika, and F. M. Najjar, Metall. Mater. Trans. B 21, 387 (1990). https://doi.org/10.1007/BF02664206
  6. K. Takatani, Y. Tanizawa, H. Mizukami, and K. Nishimura, ISIJ Int. 41, 1252 (2001). https://doi.org/10.2355/isijinternational.41.1252
  7. D. E. Hershey, B. G. Thomas, and F. M. Najjar, Int. J. Numer. Methods Fluids 17, 23 (1993). https://doi.org/10.1002/fld.1650170104
  8. X. Huang and B. G. Thomas, Can. Metall. Q. 37, 197 (1998). https://doi.org/10.1016/S0008-4433(98)00025-1
  9. Q. Yuan, B. G. Thomas, and S. P. Vanka, Metall. Mater. Trans. B 35, 685 (2004). https://doi.org/10.1007/s11663-004-0009-5
  10. R. Rogallo and P. Moin, Annu. Rev. Fluid Mech. 16, 99 (1984). https://doi.org/10.1146/annurev.fl.16.010184.000531
  11. J. Yang and E. Balaras, J. Comput. Phys. 215, 12 (2006). https://doi.org/10.1016/j.jcp.2005.10.035
  12. C. Meneveau, T. Lund, and W. Cabot, J. Fluid Mech. 319, 353 (2006).
  13. J. Kim and P. Moin, J. Comput. Phys. 59, 308 (1985). https://doi.org/10.1016/0021-9991(85)90148-2
  14. K. J. Lee, K. S. Yang, and C. W. Kang, KSCFE 15, 99 (2010).
  15. C. W. Hirt and B. D. Nichols, J. Comput. Phys. 39, 201 (1981). https://doi.org/10.1016/0021-9991(81)90145-5
  16. J. C. Park, M. M. Kim, H. Miyata, and H. H. Chun, Ocean Eng. 30, 1969 (2003). https://doi.org/10.1016/S0029-8018(03)00041-6
  17. J. C. Martin and W. J. Moyce, Ocean Eng. 244, 321 (1952).
  18. S, Koshizuka and Y. Oka, Nucl. Sci. Eng. 123, 421 (1996). https://doi.org/10.13182/NSE96-A24205