DOI QR코드

DOI QR Code

Mechanical Synthesis and Fabrication of Nanostructured TiCo Alloy by Pulsed Current Activated Sintering

기계적 합금 및 펄스전류 활성 소결에 의한 나노구조 TiCo 합금의 제조

  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Song, Ha-Young (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Kim, Wonbaek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Suh, Chang-Yul (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
  • 손인진 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 송하영 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 조성욱 (한국지질자원연구원) ;
  • 김원백 (한국지질자원연구원) ;
  • 서창열 (한국지질자원연구원)
  • Received : 2011.06.22
  • Published : 2012.01.25

Abstract

Nanopowders of TiCo were synthesized from Ti and Co by high energy ball milling. Highly dense nanostructured TiCo compounds were consolidated at low temperature by pulsed current activated sintering within 3 minutes from the mechanical synthesis of the powders (TiCo) and horizontal milled Ti+Co powders under 100 Mpa pressure. This process allows very quick densification to near theoretical density and prohibits grain growth in nanostructured materials. The grain sizes of the TiCo compounds were calculated. Finally, the average hardness values of the nanostructured TiCo compounds were investigated.

Keywords

Acknowledgement

Grant : 티타늄/타늄계 합금 스크랩의 순도제어 및 활용기술 개발

Supported by : 한국지질자원연구원

References

  1. Y. Kaneno, T. Takasugi, and S. Hanada, Mater. Sci. Eng. A 302, 215 (2002).
  2. Y. Terada, K. Ohkubo, K. Nakagawa, T. Mohri, and T. Suzuki, Intermetallics 3, 347 (1995).
  3. W. L. Frankhouser, K. W. Brendley, M. C. Kieszek, and S. T. Sullivan, Gasless Combustion Synthesis of Refractory compounds, Noyes Publications, Park Ridge, NJ, UAS, 1985.
  4. C. L. Yeh and C. C. Yeh, J. Alloys Comp. 396, 228 (2005).
  5. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).
  6. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001).
  7. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).
  8. C. Xu, J. Tamasiki, and N. Moura, Sens. Actu. 3, 147 (1991).
  9. D. G. Lamas, A. Caneiro, N. Rein, D. Sanchez, D. Garcia, and B. Alascio, J. Magn. Mater. 241, 207 (2002).
  10. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 241, 207 (2002)
  11. Z. Fang and J. W. Eason, Int. J. Refrac. 13, 297 (1995).
  12. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004).
  13. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Inter. 17, 57 (2011).
  14. I. Y. Ko, S. M. Chae, and I. J. Shon, Kor. J. Met. Mater. 48, 417 (2010).
  15. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  16. Z. Shen, M. Johnsson, Zhao Z., and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).
  17. J. E. Garay., U. Anselmi-Tamburini, Z. A. Munir, Glade S. C., and Asoka- Kumar P., Appl. Phys. Lett. 85, 573 (2004).
  18. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004).
  19. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta. Mater. 51, 4487(2003).
  20. R. L. Coble, J. Appl. Phys. 41, 4798 (1970).
  21. Hwan-Cheol Kim, In-Jin Shon, In-Kyoon Jeong, and In-Yong Ko, Met. Mater. Inter. 12, 393 (2006).