DOI QR코드

DOI QR Code

Hydrogen Desorption and Absorption Properties of MgH2, LiBH4, and MgH2 + LiBH4 Composite

  • Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
  • 투고 : 2012.05.25
  • 발행 : 2012.12.25

초록

To increase the hydrogen storage capacity of Mg-based materials, a sample with a composition of 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ was prepared by planetary ball milling under hydrogen. The absorption and desorption properties of unmilled $MgH_2$, unmilled $LiBH_4$, and 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ were examined. At 648 K the unmilled $MgH_2$ desorbed 5.70 wt% for 60 min. The unmilled $LiBH_4$ desorbed 6.40 wt% H for 780 min at 673 K. The 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ sample desorbed 3.10 wt% H for 50 min, and 3.32 wt% H for 300 min at 623 K at the second cycle.

키워드

참고문헌

  1. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  2. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967). https://doi.org/10.1021/ic50058a020
  3. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968). https://doi.org/10.1021/ic50069a016
  4. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  5. M. Pezat, A. Hbika, B. Darriet, and P. Hagenmuller, Mater. Res. Bull. 14, 377 (1979). https://doi.org/10.1016/0025-5408(79)90103-X
  6. Q. Wang, J. Wu, M. Au, and L. Zhang, in: T. N. Veziroglu, J. B. Taylor (Eds.), Proceedings of the Fifth World Hydrogen Energy Conference (Hydrogen, Energy Progress V), Vol. 3, pp.1279-1290, Toronto, Canada, Pergamon, NewYork (1984).
  7. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  8. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011). https://doi.org/10.3365/KJMM.2011.49.4.298
  9. K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  10. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  11. M. Y. Song, S. N. Kwon, S. H. Hong, and H. R. Park, Met. Mater. Int. 18, 279 (2012). https://doi.org/10.1007/s12540-012-2011-9
  12. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  13. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  14. M. Au and R. Tom Walters, Int. J. Hydrogen Energy 35, 10311 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.130
  15. C. Li, P. Peng, D. W. Zhou, and L. Wan, Int. J. Hydrogen Energy 36, 14512 (2011). https://doi.org/10.1016/j.ijhydene.2011.08.030
  16. G. L. Xia, Y. H. Guo, Z. Wu, and X. B. Yu, J. Alloys Compd. 479, 545 (2009). https://doi.org/10.1016/j.jallcom.2008.12.128
  17. G. S. Walker, D. M. Grant, T. C. Price, and X. Yu, V. Legrand, J. Power Sources 194, 1128 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.075
  18. B. C. Weng, X. B. Yu, Z. Wu, Z. L. Li, T. S. Huang, N. X. Xu, and J. Ni, J. Alloys Compd. 503, 345 (2010). https://doi.org/10.1016/j.jallcom.2009.11.059
  19. T. Nakagawa, T. Ichikawa, N. Hanada, Y. Kojima, and H. Fujii, J. Alloys Compd. 446, 306 (2007).
  20. F. E. Pinkerton and M. S. Meyer, J. Alloys Compd. 464, L1 (2008). https://doi.org/10.1016/j.jallcom.2007.09.125