DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of Nanostructured Al2TiO5 Compound by Pulsed Current Activated Sintering

펄스전류 활성 소결에 의한 나노구조 Al2TiO5 화합물 제조 및 기계적 특성

  • Kang, Hyun-Su (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Park, Hyun-Kuk (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Park, Bang-Ju (College of BioNano Tech., Gachon University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
  • 강현수 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 박현국 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 도정만 (한국과학기술연구원 계면제어연구센터) ;
  • 윤진국 (한국과학기술연구원 계면제어연구센터) ;
  • 박방주 (가천대학교 바이오나노학부) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발연구센터)
  • Received : 2012.03.07
  • Published : 2012.11.25

Abstract

Nano powders of $Al_2O_3$ and $TiO_2$ compounds made by high energy ball milling were pulsed current activated sintered for studying their sintering behaviors and mechanical properties. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nano-structured $Al_2TiO_5$ with small amount of $Al_2O_3$ and$TiO_2$ was formed by sintering at $1300^{\circ}C$ for 5 minute, in which average grain size was about 96 nm. Hardness and fracture toughness of the nano-structured $Al_2TiO_5$ compound with a small amount of $Al_2O_3$ and$TiO_2$ were $602kg/mm^2$ and $2.6MPa{\cdot}m^{1/2}$, respectively.

Keywords

Acknowledgement

Supported by : 한국에너지평가원(KETEP)

References

  1. M. Ishitsuka, T. Sato, T. Endo, and M. Shimada, J. Am. Ceram. Soc. 70, 69 (1987).
  2. M. Takahashi, M. Fukuda, H. Fukuda, and T. Yoko, J. Am. Ceram. Soc. 85, 3025 (2002).
  3. Bayer, J. Less-Common Met. 24, 129 (1971).
  4. F. J. Parker and R. W. Rice, J. Am. Ceram. Soc. 72, 2364 (1989).
  5. L, Giordano, M, Viviani, C, Bottino, M. T. Buscaglia, V. Buscaglia, and P. Nanni, J. Eur. Ceram. Soc. 22, 1811 (2002).
  6. J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987).
  7. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001).
  8. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).
  9. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995).
  10. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. and Eng. A 383, 229 (2004).
  11. I. J. Shon, H. J. Wang, C. Y. Suh, S. W. Cho, and W. B. Kim, Korean J. Met. Mater. 49, 374 (2011).
  12. J. Jung and S. Kang, Scr. Mater. 56, 561 (2007).
  13. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. Y. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011).
  14. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Inter. 17, 57 (2011).
  15. N. R. Park, I. Y. Ko, J. M. Doh, J. K. Yoon, and I. J. Shon, Journal of Ceramic Processing Research 12, 660 (2011).
  16. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  17. O. Knacke, O. Kubaschewski, K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer- Verlag, London (1991).
  18. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).
  19. J. E. Garay, U. A. Tamburini, Z. A. Munir, S. C. Glade, and P. A. Kumar, Appl. Phys. Lett. 85, 573 (2004).
  20. J. R. Friedman, J. E. Garay, U. A. Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).
  21. J. E. Garay, J. E. Garay, U. A. Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).
  22. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).