DOI QR코드

DOI QR Code

Effects of the Cooling Rate After Annealing Treatment on the Microstructure and the Mechanical Properties of Super-Duplex Stainless Steel

슈퍼 듀플렉스 스테인레스강의 미세조직 및 기계적 특성에 미치는 열처리 후 냉각속도의 영향

  • 권기현 (부산대학교 재료공학과) ;
  • 나영상 (한국기계연구원 부설 재료연구소) ;
  • 유위도 (한국기계연구원 부설 재료연구소) ;
  • 이종훈 (한국기계연구원 부설 재료연구소) ;
  • 박용호 (부산대학교 재료공학과)
  • Received : 2012.06.11
  • Published : 2012.10.25

Abstract

The aim of this study was to analyze the effect of the cooling rate after heat treatment on the microstructure and mechanical properties of 2507 duplex stainless steels. Heat treatment was carried out at $1050^{\circ}C$ for 1 hr, followed by controlled cooling. The cooling rates were $175.6{\times}10^{-3}^{\circ}C/s$, $47.8{\times}10^{-3}^{\circ}C/s$, $33.3{\times}10^{-3}^{\circ}C/s$, $16.7{\times}10^{-3}^{\circ}C/s$, $11.7{\times}10^{-3}^{\circ}C/s$, $5.8{\times}10^{-3}^{\circ}C/s$ and $2.8{\times}10^{-3}^{\circ}C/s$, which resulted in variations of the microstructure, such as the fractional change of the ferrite phase and sigma phase formation. Fatigue, hardness, impact and tensile tests were performed on the specimens with different cooling rates. The precipitation of the ${\sigma}$ phase caused a hardness increase and a sharp decrease of toughness and tensile elongation. The fatigue limit of the sample with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was 26 MPa higher than that of the sample with a cooling rate of $175.6{\times}10^{-3}^{\circ}C/s$. Our observations of the fracture surface confirmed that the higher fatigue resistance of the specimen with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was caused by the delay of the fatigue crack growth, in addition to higher yield strength.

Keywords

References

  1. Charles J. Super duplex stainless steels: structure and properties. In: Charles J, Bernhardsson S, editors. Duplex Stainless Steels 91: Proceedings of the Third Internationl a Conference on Duplex Stainless steels, vol. 1. 3-48 Les editions de physique. (1991).
  2. H. D. Solomon and T. M. Devine, Proc. Conf. on Duplex Stainless Steels, (ed: R. A. Lula), p.693, ASTM, Metal Park, Ohil, USA (1983).
  3. J. Charles, Proc. Conf. on Duplex Stainless Steels, (eds: J. Charles and S. Bernhardsson), p.3, Beaune, France (1991).
  4. K. Johansson, Pro. Conf. on Duplex Stainless Steels, (eds: J. Charles and S. Bernhardsson), p.13, Associazione Italiana Metallurgia, Venezia, Italy (2000).
  5. J. O. Nilsson, Material Science and Technology, p.685 (1992).
  6. J. Charles, Duplex stainless Steels, p.3 (1991).
  7. X. G. Wang, D. Dumortier, and Y. Riquier, "Duplex Stainless Steels 91". (ed, J. Charles), p.127 (1991).
  8. J. O. Nilsson, Mater. Sci. Technol. 8, 685 (1992).
  9. G. H. Kwon, Y. S. Na, W. D. Yoo, J. H. LEE, and Y. H. Park, Korean J. Met. Mater, 50, 7 (2012).
  10. T. H. Chen, K. L. Weng, and J. R. Yang, Materials Science and Engineering, pp.259-270 (2002).
  11. K. Massol, J. B. Vogt, and J. Foct, Int. J. Fatigue 24, 627 (2002).
  12. J. M. Cabrera, A. Mateo, L. Llanes, J. M. Prado, and M. Anglada, Journal of materials processing technology 321-325 (2003).
  13. S. Topolska and J. Labanowski, Jonrnal of Achievements in Materials and Manufacturing Engineering. Vol. 36 (2009).
  14. J. I. Bae, S. T. Kim, T. H. Lee, and H. Y. Ha, Korean. J. Met. Mater, 49, 93 (2010).
  15. T. H. Kang, Y. D. Lee, and C. S. Lee, J. Kor. Inst. Met. & Mater. 36, 7 (1998).