Effect of Green Tea and Saw Dust Contents on Dynamic Modulus of Elasticity of Hybrid Composite Boards and Prediction of Static Bending Strength Performances

이종복합보드의 동적탄성률에 미치는 녹차와 톱밥 배합비율의 영향 및 정적 휨 강도성능의 예측

  • Park, Han-Min (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Lee, Soo-Kyeong (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Seok, Ji-Hoon (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Choi, Nam-Kyeong (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Kwon, Chang-Bae (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Heo, Hwang-Sun (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Byeon, Hee-Seop (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Yang, Jae-Kyung (Div. of Environmental Forest science, Gyeongsang National Univ.(Insti. of Agric. and Life Sci.)) ;
  • Kim, Jong-Chul (Institute of Hadong Green Tea)
  • 박한민 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 이수경 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 석지훈 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 최남경 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 권창배 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 허황선 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 변희섭 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 양재경 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 김종철 (하동녹차연구소)
  • Received : 2011.10.26
  • Accepted : 2012.04.27
  • Published : 2012.04.30

Abstract

In this study, in addition to the green tea - wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on dynamic MOE (modulus of elasticity). Dynamic MOE was within 1.41~1.65 GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 1.4~1.6 times higher than static bending MOE of wood fiber - saw dust - green tea hybrid composite boards, and were 2.0~2.9 times lower than those of green tea - wood fiber hybrid composite boards reported in the previous researches. From the results of correlation regression analyses between dynamic MOE and static strength performances, a very high correlation coefficients were obtained, therefore it was found that static bending strength performances can be estimated with a high reliability from dynamic MOE.

이 연구에서는 선행연구의 녹차-목재섬유 복합보드에 부가하여, 목제품 생산 후 발생하는 부산물인 편백나무 톱밥의 효율적인 이용과 건축내장재로의 응용을 목표로 목재섬유와 편백톱밥 및 녹차를 혼합한 복합보드를 제조하여 동적탄성률에 미치는 톱밥 및 녹차 배합비율의 영향 및 동적탄성률로부터 정적 휨강도성능의 예측가능성을 평가하였다. 목재섬유-톱밥-녹차 복합보드의 동적탄성률은 1.41~1.65 GPa의 범위에 있었고, 목재섬유: 톱밥: 녹차의 배합비율 50 : 40 : 10에서 가장 높은 값을 나타내었다. 이 값은 정적 휨 탄성계수의 1.4~1.6배의 높은 값을 나타내었고, 녹차-목재섬유복합보드보다 2.0~2.9배 낮은 값을 나타내었다. 동적탄성률과 정적 휨 강도성능과의 상관회귀에서는 일부 예외를 제외하고 대부분 매우 높은 상관계수가 확인되어, 양단자유 휨 진동에 의한 동적탄성률로부터 정적 휨강도성능의 예측이 비파괴적으로 가능할 것으로 사료된다.

Keywords

Acknowledgement

Supported by : (재)하동녹차연구소

References

  1. Ayarkwa, J., Y. Hirashima, and Y. Sasaki. 2001. Predicting modulus of rupture of solid and finger-jointed tropical African hardwoods using longitudinal vibration. Forest Prod. J. 51: 85-92.
  2. Byeon, H. S., H. M. Park, C. H. Kim, and F. Lam. 2005. Nondestructive evaluation of strength performance for finger-jointed woods using flexural vibration techniques. Forest Prod. J. 55: 37-42.
  3. Cha, J. K. 1996. Study on stress waves for development of glulam from domestic small diameter log(1). Mokchae Konghak 24: 90-100.
  4. Han, T. H. R. H. Shin, and J. H. Kwon. 2005. Physical properties of composite panel manufactured from wood particle and recycled polypropylene. Mokchae Konghak 33: 46-54.
  5. Jang, S. S. 2000. Evaluation of lumber properties by applying stress waves to larch logs grown in Korea. Forest Prod. J. 50: 44-48.
  6. Kataoka, A. and T. Ono 1975. The relations of experimental factors to the vibration and the measuring values of dynamic mechanical properties of wood I. The experimental errors due to the measuring apparatus. Mokuzai Gakkaishi 21: 543-550.
  7. Lee, B. H., H. S. Kim, S. W. Choi, and H. J. Kim. 2006. Improvement of interfacial adhesion for surface treated rice husk flour-filled polypropylene bio-composites. Mokchae Konghak 34: 38-45.
  8. Lee, H. H. and G. U. Kim. 2003. Properties of Clay-wood ceramics from 3 layers-clay-wood particleboard. Mokchae Konghak 31: 80-87.
  9. Lee S. N., B. H. Lee, H. J. Kim, S. M. Kim and Y. G. Eom. 2009. Properties evaluation of bio-composite by content and particle size of bamboo flour. Mokchae Konghak 37: 310-319.
  10. Norimoto, M. 1982. Structure and properties of wood used for musical instruments 1. Mokuzai Gakkaishi 28: 407-413.
  11. Matsumoto, T. and J. Tsutsumi 1968. Elastic properties of plywood in dynamic test I. Relation between static Young's modulus and dynamic Young's modulus. Mokuzai Gakkaishi 14: 65-69.
  12. Park, H. M., M. Fushitani, K. Sato, T. Kubo, and H. S. Byeon. 2003. Static bending strength performances of cross-laminated woods made with five species. J. Wood Sci. 49: 411-417. https://doi.org/10.1007/s10086-002-0502-x
  13. Park, H. M., M. Fushitani, K. Sato and T. Kubo. 2004. Static bending strength performances of woodaluminum hybrid laminated material. Trans. Mat. Res. Soc. Japan 29: 2503-2506.
  14. Park, H. M., M. Fushitani, K. Sato, T. Kubo, and H. S. Byeon. 2006. Bending creep performances of three-ply cross-laminated woods made with five species. J, Wood Sci, 52: 220-229. https://doi.org/10.1007/s10086-005-0750-7
  15. Park, H. M. and H. S. Byeon. 2006. Measurement of dynamic MOE of 3-ply laminated woods by flexural vibration and comparison with bending strength and creep performances. Mokchae Konghak 34: 46-57.
  16. Park, H. M. & M. Fushitani. 2007. Bending creep property of wood-aluminum hybrid laminated material. Mokuzai Gakkaishi 53: 14-24. https://doi.org/10.2488/jwrs.53.14
  17. Park, H. M., S. J. Moon, Y. E. Choi, J. H. Park, and H. S. Byeon. 2009. Static bending strength performances of hybrid laminated wood composed of wood-wood based boards. Mokchae Konghak 37: 546- 555.
  18. Park, H. M., D. H. Kang, N. R. Lim, S. K. Lee, K. W. Jung, J. C. Kim, and K. H. Cho. 2010a. Effect of green tea content on static bending strength performances of hybrid boards composed of green tea and wood fibers. J. Agric. Life Sci. 44: 1-8.
  19. Park, H. M., D. H. Kang, Y. E. Choi, S. Y. Ahn, H. S. Ryu, and H. S. Byeon. 2010b. Benidng creep performances of hybrid laminated wood composed of wood-wood based boards. Mokchae Konghak 38: 1- 10.
  20. Park, H. M., S. K. Lee, J. H. Seok, N. K. Choi, C. B. Kwon, H. S. Byeon, J. K. Yang, and J. C. Kim. 2011a. Effect of green tea content on dynamic modulus of elasticity of hybrid boards composed of green tea and wood fibers, and prediction of static bending strength performances by flexural vibration test. Mokchae Konghak
  21. Park, H. M., S. K. Lee, J. H. Seok, N. K. Choi, C. B. Kwon, H. S. Heo, and J. C. Kim. 2011b. Effect of green tea and saw dust contents on static bending strength performance of hybrid boards composed of wood fibers, saw dust and green tea. J. Agric. Life Sci.
  22. Sobue, N., H. Nakano, and I. Asano. 1984. Vibrational properties of spruce plywood for musical instruments. Mokuzai Gakkaishi 31: 93-97.