Enhancement of Growth and Bioactivity of Pleurotus eryngii Mycelia by Spent Coffee Ground

커피박 첨가에 의한 새송이버섯 균사체의 생육 및 생리활성 증가

  • Choi, Jang-Won (Department of Bioindustry, Daegu University) ;
  • Shin, Dong-Il (Department of Biotechnology, Catholic University of Daegu) ;
  • Park, Hee-Sung (Department of Biotechnology, Catholic University of Daegu)
  • 최장원 (대구대학교 바이오산업학과) ;
  • 신동일 (대구가톨릭대학교 생명공학과) ;
  • 박희성 (대구가톨릭대학교 생명공학과)
  • Received : 2012.09.11
  • Accepted : 2012.12.26
  • Published : 2012.12.31

Abstract

Pleurotus eryngii. one of the most popular edible mushrooms, has been well known for its biological activities such as antioxidation, antitumor and immune modulation. Spent coffee ground(SCG) that is a waste product from the coffee industry has been continuously investigated for its reutilization. In this study, SCG was added to the fungal cultuvation medium and analyzed for its effect on the growth and physiological activity of P. eryngii mycelia. It was clearly demonstrated that SCG could accelarate mycelia growth. 1% SCG culture was very notable by showing 2.5-fold higher dry cell weight comapred to the control culture, which suggested SCG as an excellent activator for the growth of P. eryngii mycelia. By the addition of SCG, polyphenol content was increased by two fold but there was no change in polysaccharide content. In the analysis of DPPH scavenging activity, SCG was determined as a valuable source in order to significantly increase the antioxidative activity of the mycelium.

새송이버섯(Pleurotus eryngii)은 인기 있는 식용버섯 중의 하나로서 항산화, 항암 또는 면역조절 기능 등의 인체에 유익한 생리활성 기능을 지닌다. 본 연구에서는 새송이버섯 균사체 배양 시 커피음료 생산과정으로부터 폐기되는 커피박(spent coffee ground: SCG) 첨가에 의한 균사체의 생장과 기능성의 변화를 조사하였다. 그 결과, SCG(1-10%, w/v) 첨가 시 생장속도가 상당히 증가하는 경향을 나타내었다. 특히 1% SCG 첨가 시 무첨가에 비해 건조중량이 2.5배 증가함으로써 SCG가 탁월한 새송이버섯 균사체의 생장촉진제 기능이 제시되었다. SCG 첨가에 의하여 균사체의 polysaccharide 함량은 변화가 없었으나 polyphenol량 및 항산화능의 증대를 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 농림수산식품기술시획평가원(IPET)

References

  1. Becker, E. M., L. R. Nissen, and L. H. Skibsted. 2004. Antioxidant evaluation protocols: Food quality or health effects. Eur. Food Res. Technol. 219: 561-571. https://doi.org/10.1007/s00217-004-1012-4
  2. Buyssee, J. and R. Merckx. 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44: 1627-1629. https://doi.org/10.1093/jxb/44.10.1627
  3. Esquivel, P. and V. M. Jimenez. 2012. Functional properties of coffee and coffee by-products. Food Res. Inter. 46: 488-495. https://doi.org/10.1016/j.foodres.2011.05.028
  4. Estrada, R. A. E. and D. J. Royse. 2007. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Biores. Technol. 98: 1898-1906. https://doi.org/10.1016/j.biortech.2006.07.027
  5. Franca, A. S., L. S. Oliveira, and M. E. Ferreira. 2009. Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249: 267-272. https://doi.org/10.1016/j.desal.2008.11.017
  6. Hatano, T., H. Kagawa, T. Yasuhara, and T. Okuda. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36: 1090-1097.
  7. Hecimovic, I., A. Belscak-Cvitanovic, D. Horzic, and D. Komes. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 129: 991-1000. https://doi.org/10.1016/j.foodchem.2011.05.059
  8. Liu, K. and G. W. Price. 2001. Evaluation of three composting systems for the management of spent coffee grounds. Bioresource Technol. 102: 7966-7974.
  9. Liu, X., B. Zhou, R. Lin, L. Jia, P. Deng, K. Fan, G. Wang, L. Wang, and J. Zhang. 2010. Extraction and antioxidant activities of intracellular polysaccharide from Pleurotus sp. mycelium. Int. J. Biol. Macromol. 47: 116-119. https://doi.org/10.1016/j.ijbiomac.2010.05.012
  10. Machado, E. M. S., R. M. Rodriguez-Jasso, J. A. Teixeira, and S. I. Mussatto. 2012. Growth of fungal strains on coffee industry residues with removal of polyphenolic compounds. Biochem. Eng. J. 60: 87-90.
  11. Minamisawa, M., S. Yoshida, and N. Takai. 2004. Determination of biologically active substances in roasted coffees using a diode-array HPLC system. Anal. Sci. 20: 325-328. https://doi.org/10.2116/analsci.20.325
  12. Nebesny, E. and Budryn, G. 2003. Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur. Food Res. Technol. 217:157-63. https://doi.org/10.1007/s00217-003-0705-4
  13. Nkondjock, A., P. Ghadirian, J. Kotsopoulos, J. Lubinski, H. Lynch, C. Kim-Sing, and D. Horsman, B. Rosen, C. Isaacs, B. Weber, W. Foulkes, P. Ainsworth, N. Tung, A. Eisen, E. Friedman, C. Eng, P. Sun, and S. A. Narod. 2006. Coffee consumption and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Int. J. Cancer. 118: 103-107. https://doi.org/10.1002/ijc.21296
  14. Niseteo, T., D. Komes, A. Belsak-Cvitanovic, D. Horzic, and M. Budec. 2012. Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition. Food Chem. 134: 1870-877. https://doi.org/10.1016/j.foodchem.2012.03.095
  15. Palacios, I., C. Moro, M. Lozano, M. D'Arrigo, E. Gullamon, A. Garcia-Lafuente, and A. Villares. 2011. Antioxidant properties of phenolic compounds occuring in edible mushrooms. Food Chem. 128: 674-678. https://doi.org/10.1016/j.foodchem.2011.03.085
  16. Ridha, H., O. Rekik, S. Hachicha, M. Ferchichi, S. Woodward, N. M. J. Cegarra, and T. Mechichi. 2012. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere 88: 677-682. https://doi.org/10.1016/j.chemosphere.2012.03.053
  17. Saenger, M., E. Hartge, J. Werther, T. Ogada, and Z. Siagi. 2001. Combustion of coffee husks. Renew. Energ. 23: 103-121. https://doi.org/10.1016/S0960-1481(00)00106-3
  18. Silva, M. A., S. A. Nebra, M. J. Machado, and C. G. Sanchez. 1998. The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenerg. 14: 457-467. https://doi.org/10.1016/S0961-9534(97)10034-4
  19. Simoes, J., P. Madureira, F. M. Nunes, M. R. Domingues, M. Vilanova, and M. A. Coimbra. 2009. Immunostimulatory properties of coffee mannans. Mol. Nut. Food Res. 53: 1036-1043. https://doi.org/10.1002/mnfr.200800385
  20. Sung, W. S. and D. G. Lee. 2010. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl. Chem. 82: 219-226. https://doi.org/10.1351/PAC-CON-09-01-08
  21. Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enz. 299: 152-178.
  22. Tokimoto, T., N. Kawasaki, T. Nakamura, J. Akutagawa, and S. Tanada. 2005. Removal of lead ions in drinking water by coffee grounds as vegetable biomass. J. Colloid Interf. Sci. 281: 56-61. https://doi.org/10.1016/j.jcis.2004.08.083
  23. Vennat, B., D. Gross, and H. Pourrat. 1992. Hamamelis virginiana: identification and assay of proanthrocyanidins, phenolic acids and flavonoids in leaf extracts. Pharm. Acta. Helv. 67: 11-14.
  24. Vignoli, J. A., D. G. Bassoli, and M. T. Benassi. 2011. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 124: 863-868. https://doi.org/10.1016/j.foodchem.2010.07.008
  25. Wasser, S. P., and A. L. Weis. 1999. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: Current perspectives (review). Int. J. Med. Mushrooms. 1: 31-62.