DOI QR코드

DOI QR Code

멍게(Halocynthia roretzi) 혈구의 종류와 미세구조

Classification and Ultrastructure of Hemocytes in the Tunicate Halocynthia roretzi (Ascidiacea: Pyuridae)

  • 신윤경 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 전제천 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 손맹현 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 김혜진 (전남대학교 수산생명의학과) ;
  • 이정식 (전남대학교 수산생명의학과)
  • Shin, Yun Kyung (Aquaculture Management Division, Aquaculture Research Institute, National Fisheries Research and Development Institute) ;
  • Jun, Je Cheon (Aquaculture Management Division, Aquaculture Research Institute, National Fisheries Research and Development Institute) ;
  • Son, Maeng Hyun (Aquaculture Management Division, Aquaculture Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Hyejin (Department of Aqualife Medicine, Chonnam National University) ;
  • Lee, Jung Sick (Department of Aqualife Medicine, Chonnam National University)
  • 투고 : 2012.08.13
  • 심사 : 2012.10.10
  • 발행 : 2012.10.31

초록

The hemocytes of the tunicate Halocynthia roretzi are classified into six types based on their size, cellular form, and fine structure of the cytoplasmic granules: hyalinocytes, granulocytes, phagocytes, nephrocytes, morula cells, and multi-vacuole cells. Based on cell size, they are ordered multi-vacuole cells ($7.5{\mu}m$)>nephrocytes ($7.1{\mu}m$)>phagocytes ($6.8{\mu}m$)>granulocytes ($6.1{\mu}m$)>morula cells ($5.7{\mu}m$)>hyalinocytes ($5.4{\mu}m$). The proportion of hemocytes is ranked in the order multi-vacuole cells (54.8%)>nephrocytes (16.9%)>granulocytes (9.9%)>morula cells (8.8%)>phagocytes (6.1%)>hyalinocytes (3.5%).

키워드

참고문헌

  1. Abe Y, Ishikawa G, Satoh H, Azumi K and Yokosawa H. 1999. Primary structure and function of superoxide dismutase from the ascidian Halocynthia roretzi. Comp Biochem Physiol B Biochem Mol Biol 122, 321-326. https://doi.org/10.1016/S0305-0491(99)00022-X
  2. Azumi K, Satoh N and Yokosawa H. 1993. Functional and structural characterization of hemocytes of the solitary ascidian, Halocynthia roretzi. J Exp Zool 265, 309-316. https://doi.org/10.1002/jez.1402650312
  3. Ballarin L, Franchini A, Ottaviani E and Sabbadin A. 2001. Morula cells as the major immunomodulatory hemocytes in ascidians: Evidences from the colonial species Botryllus schlosseri. Biol Bull 201, 59-64. https://doi.org/10.2307/1543526
  4. Burighel P and Cloney RA. 1997. Urochordata: Ascidiacea. In: Microscopic Anatomy of Invertebrates, Vol. 15, Hemichordata, Chaetognatha, and the Invertebrate Chordates. Harrison FW and Ruppert EE, eds. Wiley-Liss, New York, USA, 221-347.
  5. Burighel P, Milanesi C and Sabbadin A. 1983. Blood cell ultrastructure of the ascidian Botryllus schlosseri. II. Pigment cells. Acta Zool 64, 15-23. https://doi.org/10.1111/j.1463-6395.1983.tb00637.x
  6. Cha IS, Castillo CS, Nho SW, Hikima J, Aoki T and Jung TS. 2011. Innate immune response in the hemolymph of an ascidian, Halocynthia roretzi, showing soft tunic syndrome, using label-free quantitative proteomics. Dev Comp Immunol 35, 809-816. https://doi.org/10.1016/j.dci.2011.01.011
  7. Choi DL, Lee NS, Kim MS, Seo JS, Park MA, Kim JW and Hwang JY. 2010. Flow cytometry analysis of softness syndrome effects on hemocytes of the tunicate Halocynthia roretzi. Aquaculture 309, 25-30. https://doi.org/10.1016/j.aquaculture.2010.09.009
  8. Cima F, Perin A, Burighel P and Ballarin L. 2001. Morphofunctional characterization of haemocyes of the compound ascidian Botrylloides leachi (Tunicata, Ascidiacea). Acta Zool 82, 261-274.
  9. Dan-Sohkawa M, Morimoto M, Mishima H and Kaneko H. 1995. Characterization of coelomocytes of the ascidian Halocynthia roretzi based on phase-contrast, time lapse video and scanning electron microscopic observation. Zool Sci 12, 289-301. https://doi.org/10.2108/zsj.12.289
  10. Frizzo A, Guidolin L, Ballarin L, Baldan B and Sabbadin A. 2000. immunolocation of phenoloxidase in vacuoles of the compound ascidian Botryllus schlosseri morula cells. Ital J Zool 67, 273-276. https://doi.org/10.1080/11250000009356323
  11. Hirose E, Saito Y and Watanabe H. 1991. Tunic cell morphology and classification in botryllid ascidians. Zool Sci 8, 951-958.
  12. Hirose E, Yoshida T, Akiyama T, Ito S and Iwanami Y. 1998. Pigment cells representing polychromatic colony color in Botrylloides simodensis (Ascidiacea, Urochordata): Cell morphology and pigment substances. Zool Sci 15, 489-497.
  13. Hirose E, Shirae M and Saito Y. 2003. Ultrastructures and classification of circulating hemocytes in 9 botryllid ascidians (Chordata: Ascidiacea). Zool Sci 20, 647-656. https://doi.org/10.2108/zsj.20.647
  14. KSSZ (Korean Society of Systematic Zoology). 1997. List of Animals in Korea (excluding insects). Academy press, Seoul, Korea, 489.
  15. Manni L, Zaniolo G and Burighel P. 1994. Ultrasructural study of oogenesis in the compound ascidian Botryllus schlosseri (Tunicata). Acta Zool 75, 101-112. https://doi.org/10.1111/j.1463-6395.1994.tb01115.x
  16. Milanesi C and Burighel P. 1978. Blood cell ultrastructure of the ascidian Botryllus schlosseri. I. Hemoblast, granulocytes, macrophage, morula cell and nephrocyte. Acta Zool 59, 135-147. https://doi.org/10.1111/j.1463-6395.1978.tb01029.x
  17. Shin YK, Jun JC, Kim EO and Hur YB. 2011. Physiological changes and energy budget of the sea squirt Halocynthia roretzi from Tongyeong, south coast of Korea. Kor J Fish Aquat Sci 44, 366-371. https://doi.org/10.5657/KFAS.2011.0366