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Results for molecular dynamics simulation method of small liquid drops of argon (N = 1200-14400 molecules)

at 94.4 K through a Lennard-Jones intermolecular potential are presented in this paper as a preliminary study

of drop systems. We have calculated the density profiles ρ(r), and from which the liquid and gas densities ρl

and ρg, the position of the Gibbs’ dividing surface Ro, the thickness of the interface d, and the radius of

equimolar surface Re can be obtained. Next we have calculated the normal and transverse pressure tensor pN(r)

and pT(r) using Irving-Kirkwood method, and from which the liquid and gas pressures pl and pg, the surface

tension γs, the surface of tension Rs, and Tolman’s length δ can be obtained. The variation of these properties

with N is applied for the validity of Laplace’s equation for the pressure change and Tolman’s equation for the

effect of curvature on surface tension through two routes, thermodynamic and mechanical. 
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Introduction

The investigation of mechanical or thermodynamic pro-

perties of small systems is of great scientific and practical

interest. When considering liquid drops in the theory of

surface phenomena, a most important effect is the depen-

dence of the surface tension on the drop size. The thermo-

dynamic analysis of Gibbs1 and the older mechanical ideas

of Young, Laplace, and others2-7 lead to several widely used

formulas for droplets. 

Laplace2 considered a liquid droplet floating in a vapor

phase and noticed that the surface tension of the liquid-vapor

interface tries to contract the spherical surface of the droplet.

The droplet must therefore be stabilized by a pressure

difference over the interface that balances the contracting

force. The Laplace equation expresses this condition for

mechanical equilibrium for a three dimensional fluid:

,  (1)

where  is the pressure difference between the

interior of the drop (pl) and the gas (pg) and γs is the surface

tension referred to the surface of tension Rs (radius of

tension).

The Tolman equation for the variation of the surface

tension with drop size is given by

, (2)

where  is the surface tension for the planar interface and

δ = Re − Rs is called Tolman's length after Tolman3 with Re

the radius for the equimolar surface. Using Eqs. (1) and (2),

the thermodynamic route leads to 

. (3)

The equimolar dividing surface at radius Re is defined so

that the system would contain an equal number of molecules

where the density remains constant at its two respective

limiting value on either side of the surface, with a dis-

continuous change at the surface itself. For a spherical drop,

Re is given by

. (4)

The local pressure tensor p(r) for drops can be defined8,9 in

terms of the pair-correlation function of the fluid and

although this definition is not unique, all tensors have in

common that they satisfy the condition

 (5)

in the absence of an external filed. Furthermore, all tensors

become isotropic in a bulk phase with diagonal components

p, the pressure in the bulk. In a spherical symmetry, the

pressure tensor has only two independent components

 (6)

where  is a unit vector in the direction r, r is the distance

from the origin, and I is the unit tensor. pN(r) and pT(r) are

the normal and transverse components of the pressure tensor

at position r, respectively.

The general condition of mechanical equilibrium, Eq. (5),

leads to

.  (7)

Note that pN(r) and pT(r) both become equal to the bulk

pressure p in a bulk phase. Integrating Eq. (7) from 0 to a

position Rv (or ) sufficiently deep in the vapor phase gives

the pressure difference Δp,

.  (8)
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Combining to the Laplace Eq. (1), we obtain for the surface

tension

.  (9)

From mechanical arguments for the force and torque on a

hypothetical strip cutting the surface of the drop, Bakker10

and Buff11 obtained the equation

 .  (10)

Eq. (9) is invariant to the form of the pressure tensor,

whereas Eq. (10) is not. Combining Eqs. (7) and (10), using

Eq.(1), gives for γs

.  (11)

Molecular Dynamics Simulation and Irving-Kirkwood

Pressure Tensor. The usual Lennard-Jones (LJ) 12-6

potential for the interaction between argon molecules is used

with LJ parameters, σ = 0.34 nm and ε/kB = 120 K, where kB

is the Boltzmann constant. The inter-atomic potential is

truncated at rc = 4σ and long-range corrections are applied to

the energy, pressure, etc. due to the potential truncation.12

The time integrations for the equation of translational

motion is solved using the velocity-Verlet algorithm13 with a

time step of 5 × 10−15 second (5 fs). The temperature (94.4

K) is kept constant by using a Nose-Hoover14,15 thermostat.

These systems of N = 1200, 1800, 3600, 7200, 10800, and

14400 molecules of argon are fully equilibrated in cubic

boxes with spherical boundary conditions16:

    (12)

where k = 25 cal/mol and ro is given in Table 1 for each

system of N. This external repulsive potential serves to

prevent molecules from leaving the spherical cell. The

values of k and ro have to be chosen with care. The value of

ro must not be so small that the potential interferes the drop,

nor so large that the vapor phase is very large or that the drop

evaporates.

The Irving-Kirkwood (IK) pressure tensor is calculated by

an extension to a spherically symmetric system of the

method described by Tsai.17 Details of the calculation of

 is are given in the appendix of Ref. 16 and we

describe the brief calculation here. The normal component

pN(r) is the sum of kinetic and configurational terms 

,  (13)

where  is the kinetic term. The configu-

rational term is given by

,  (14)

where S = 4πr2 is the area of a spherical surface of radius r

and the sum over k is over the normal components of all the

pair forces fk acting across the surface. For a single surface S

and one pair of molecules, the relevant geometry is given in

Figure 1. Depending on the location of molecule i and j, the

force acts across no [Fig. 1(a)], only one [Fig. 1(b)], or two

intersection(s) [Fig. 1(c)]. The force vector f(rij) is given by

 and 

so that

. (15)

Since the end of r (rA or rB) lines on S and is between i

and j, we can write in Figure 1(c)

,  (16)

where λ is an undetermined constant in the range −1 ≤ λ ≤ 1

so that r = rA, λ < 0 and r = rB, λ > 0. We can find the two λ
values for rA and rB for a given surface, λ+ and λ

−

, so that the

fk acts across the surface by squatting Eq. (16) and solving

the resulting quadratic: 
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Table 1. The parameter of external repulsive potential in Eq. (12) ro, the liquid and gas densities ρl and ρg, the position of the Gibbs’ dividing
surface Ro, the thickness of the interface d, the radius of equimolar surface Re, number of molecules in the drop Nd, and the percentage of Nd/
N obtained from this work

N ro (nm) ρl (g/cm3) ρg (g/cm3) Ro (nm) d (nm) Re (nm) Nd Nd/N (%)

14400 10.99 1.360 0.008 5.47 0.77 5.48 13985 97.1

10800 9.99 1.364 0.010 4.96 0.80 4.99 10464 96.9

7200 8.72 1.365 0.014 4.31 0.79 4.34 6910 96.0

3600 6.92 1.371 0.020 3.38 0.80 3.43 3375 93.8

1800 5.50 1.384 0.031 2.40 0.76 2.45 1625 90.2

1200 4.80 1.403 0.044 2.02 0.80 2.08 1033 86.1

Figure 1. Geometry for calculating the contribution to the pressure
tensor from a pair of molecules i and j with (a) no, (b) only one, (c)
or two intersection(s).
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 (17)

and so for both intersection the scalar product that appears in

Eq. (15) has the same value as required by symmetry. The

final result is obtained from r in Eq. (17):

.  (18)

If both |λ+| ≤ 1 and |λ
−

| ≤ 1, there are two intersection [Fig.

1(c)]. If both |λ+| > 1 and |λ
−

| > 1, there is no intersection

[Fig. 1(a)]. For the other cases, there is only one interaction

[Fig. 1(b)]. The following two equalities are used: 

=  and .

Results and Discussion

Typical density profiles for different numbers of argon

molecules (N), obtained from simulations, are shown in

Figure 2 as dashed lines. A hyperbolic tangent function of

the form18

 (19)

is fitted to the simulation results where Ro is the position of

the Gibbs’ dividing surface and d is a parameter for thick-

ness of the interface. In the drop center the counting statistics

are so poor because of the low volume of each shell in this

region that the density profile of the central part is artificially

flat. The fitted ρ(r) and the positions of Ro are shown as solid

lines and as dotted lines in Figure 2, respectively. The values

of Ro and d used in Eq. (19) with ρl and ρg are given in Table

1 for different numbers of argon molecules (N). Both

densities strongly increase with decreasing N. Using Eq. (4)

and the obtained density profiles ρ(r), the radii Re for the

equimolar surface for different numbers of argon molecules

(N) are calculated and also listed in Table 1. The values for

Ro and Re are very close each other and they increase with

increasing N. 

To estimate a measure of the average drop size, the

number of molecules Nd in the drop is defined as16

,  (20)

where

.  (21)

The drop contains molecules out to a radius R10 where the

local density has fallen to the gas density plus 10% of the

difference between ρl and ρg. The values of Nd obtained

from the simulation are listed in Table 1. The percentage of

Nd/N (Table 1) strongly decreases with decreasing N, in

accord with the strong increment of ρg with decreasing N,

indicating that small drops are only stable in surroundings of

a high pressure gas phase. Or it might be related to artifi-

cially the volume of the cubic simulation box in which the

drop of liquid argon is immersed.

Figures 3 and 4 show the normal and transverse compo-

nents of the pressure tensor. First,  are obtained from

the simulation according to the Irving-Kirkwood (IK)

method, Eqs. (13)-(18), and then  are derived from

these by Eq. (7). The central part of the kinetic term 

in Eq. (13) is flat because of poor statistics for ρ(r) in the

drop center, while the configurational term  is not

since many pairs of molecules i and j give contribution to the

pressure tensor in the drop center. The central part of the
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Figure 2. Density profiles for different numbers of argon
molecules (N) at 94.4 K, obtained from simulations, are shown as
dashed lines. The fitted ρ(r) as Eq. (19) are shown as solid lines
and the straight dotted lines represent the positions of Ro.

Figure 3. The Irving-Kirkwood (IK) normal pressure tensor at
94.4 K. 
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final  is not flat unlike the earlier study.16 It increases

with r and decreases after a maximum at rmax < Re. 

The values of pl and pg in Table 2 are obtained by

averaging  from r = 0 to rmax and from r = Re+d/2 to r

= , respectively, instead of using Eq. (19) with ρ replaced

by  as reported in Ref. 16. Both pl and pg decrease with

increasing N indicating high pl and pg at small N. The value

of  may be different from 

which is obtained from Eqs. (7) and (8). The values of

 in Eq. (3) with = 10.77 mN/m19 ranged in 1.1-1.5

nm−1 are normal but Re in Table 1 are large, which results in

 for all the cases of N. This concludes that Eq. (3),

the thermodynamic route, is unable to calculate Rs. The

criterion for the thermodynamic route, , is some-

what irrational since Re increases with increasing N as seen

in Table 1, showing that Eq. (3) is unsuccessful for large Re

and therefore for large N.

The mechanical route for γs, Eq. (10), has an analogy to

 for the planar interface:

,  (22)

where pN(z) and pT(z) are the normal and transverse

components of the pressure tensor at position z, respectively,

with Lz the length of z-side of simulation box. Recent studies

for vapor-liquid interface at 94.4 K using a test-area mole-

cular dynamics simulation method have reported an ex-

cellent agreement with the experimental data for .20,21

The values of the surface tension γs using Eq. (11), the

mechanical route plus the Laplace equation, obtained from

the simulation are listed in Table 2 for different numbers of

argon molecules (N). γs increases with increasing N, and

gives the exact value of  for N = 3600 so that Tolman’s

length δ in this case is 0 according to Eq. (2). Generally γs is

less than  due to δ > 0 [Eq. (2)], but γs obtained from

simulations are larger than  for N > 7200. This is also

reported in the other study. For example,  is 0.85 for the

thermodynamics route and 0.74 for the mechanical route in

the case of N = 2048 (the largest N in Ref. 16) with  =

0.75 where the reduced γ* is defined as . This indicates

that the liquid drops of argon in this study are somewhat

large. 

The values of Rs and δ, calculated from the values of γs

using Eqs. (1) and (2), are listed in Table 2. The results from

Eq. (1) are reasonable, while those from Eq. (2) are some-

what unacceptable except the cases of small N. The Tolman’s

lengths are negative for large N. The failure of the thermo-

dynamic route for Rs, Eq. (3), is originated from the Tolman

equation, Eq. (2), for large N. Note that the Laplace equation,

Eq. (1),  is very similar to Eq. (22) for .

In summary, we have carried out molecular dynamics

simulations of small liquid drops of argon (1200-14400

molecules) at T = 94.4 K in which the atoms interact with a

Lennard-Jones intermolecular potential cutoff at 4σ with

spherical boundary conditions. The obtained surface tension

γs using the mechanical route increases with increasing N,

and gives the exact value of  (surface tension for the

planar interface) for N = 3600 so that Tolman’s length δ = 0

in this case. Generally γs is less than  due to δ > 0 (the

Tolman equation), but γs obtained from simulations are

larger than  for N > 7200. The thermodynamic route,

combining the Laplace equation and the Tolman equation, is

failed for large radii of the equimolar surface Re and

therefore for large N which is originated from the Tolman

equation for large N. This result restricts the size of liquid

drop of argon to be less than N = 3600.
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Figure 4. The Irving-Kirkwood (IK) transverse pressure tensor at
94.4 K. 

Table 2. The liquid and gas pressures ρl and ρg, the surface tension γs, the surface of tension Rs, and Tolman’s length δ obtained form this
work

N ρl (bar) ρg (bar) γs (mN/m) Rs (nm), Eq. (1) δ (nm), Eq. (1) Rs, Eq. (2) δ, Eq. (2)

14400 123.5 1.1 15.8 2.58 2.90 7.15 -1.67

10800 125.1 1.2 14.6 2.36 2.63 6.07 -1.08

7200 131.0 1.3 13.3 2.05 2.29 4.92 -0.58

3600 135.1 1.6 10.8 1.62 1.81 3.43 0.00

1800 147.8 2.0 8.24 1.13 1.32 2.19 0.26

1200 163.8 2.1 6.47 0.80 1.28 1.73 0.35
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