DOI QR코드

DOI QR Code

Effects of Microsolvation on the Stability of Zwitterionic Valine

  • Kim, Ju-Young (Department of Applied Chemistry, Kyung Hee University) ;
  • Won, Gang-Yeon (Department of Applied Chemistry, Kyung Hee University) ;
  • Lee, Sungyul (Department of Applied Chemistry, Kyung Hee University)
  • Received : 2012.08.07
  • Accepted : 2012.08.31
  • Published : 2012.11.20

Abstract

We present calculations for valine (Val) - $(H_2O)_n$ (n = 0-5) to examine the effects of microsolvating water on the relative stability of the zwitterionic vs. canonical forms of Val. We calculate the structures, energies and Gibbs free energies of the conformers at B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p) and MP2/aug-cc-pvdz level of theory. We find that five water molecules are needed to stabilize the zwitterionic form of Val. By calculating the barriers of the canonical ${\leftrightarrow}$ zwitterionic pathways of Val - $(H_2O)_5$ conformers, we suggest that both forms of Val - $(H_2O)_5$ may be observed in low temperature gas phase.

Keywords

References

  1. Xu, S.; Niles, J. M.; Bowen, K. H. J. Chem. Phys. 2003, 119, 10696. https://doi.org/10.1063/1.1620501
  2. Desfrancois, C.; Carles, S.; Schermann, J. P. Chem. Rev. 2000, 100, 3943. https://doi.org/10.1021/cr990061j
  3. Zwier, T. S. J. Phys. Chem. A 2001, 105, 8827. https://doi.org/10.1021/jp011659+
  4. Diken, E. G.; Hammer, N. I.; Johnson, M. A. J. Chem. Phys. 2004, 120, 9902.
  5. Snoek, L. C.; Robertson, E. G.; Kroemer, R. T.; Simons, J. P. Chem. Phys. Lett. 2001, 321, 49.
  6. Snoek, L. C.; Kroemer, R. T.; Hockridge, M. R.; Simons, J. P. Phys. Chem. Chem. Phys. 2001, 3, 1819. https://doi.org/10.1039/b101296g
  7. Mayer, I.; Valiron, P. J. Chem. Phys. 1998, 109, 3360. https://doi.org/10.1063/1.476931
  8. Balabin, R. M. J. Phys. Chem. Lett., 2010, 1, 20 https://doi.org/10.1021/jz900068n
  9. Balabin, R. M. J. Phys. Chem. B 2010, 114, 15075 https://doi.org/10.1021/jp107539z
  10. Balabin, R. M. Mol. Phys. 2011, 109, 943 https://doi.org/10.1080/00268976.2011.558858
  11. Balabin, R. M. J. Chem. Phys. 2008, 129, 164101 https://doi.org/10.1063/1.2997349
  12. Balabin, R. M. J. Chem. Phys. 2010, 132, 231101 https://doi.org/10.1063/1.3442466
  13. Balabin, R. M. Phys. Chem. Chem. Phys. 2010, 12, 5980. https://doi.org/10.1039/b924029b
  14. Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han, Y.-H.; Lee, S. J. Phys. Chem. B 2003, 107, 14019.
  15. Park, S.-W.; Ahn, D.-S.; Lee, S. Chem. Phys. Lett. 2003, 371, 74. https://doi.org/10.1016/S0009-2614(03)00221-5
  16. Jeon, I.-S.; Ahn, D.-S.; Park, S.-W.; Lee, S.; Kim, B. Int. J. Quantum Chem. 2005, 101, 55. https://doi.org/10.1002/qua.20269
  17. Lee, K.-M.; Park, S.-W.; Jeon, I.-S.; Lee, B.-R.; Ahn, D.-S.; Lee, S. Bull. Korean Chem. Soc. 2005, 26, 909. https://doi.org/10.5012/bkcs.2005.26.6.909
  18. Ahn, D.-S.; Kang, A.-R.; Lee, S.; Kim, B.; Kim, K.; Neuhauser, D. J. Chem. Phys. 2003, 122, 084310.
  19. Park, S.- W.; Im, S.; Lee, S.; Desfrançois, C. Int. J. Quantum Chem. 2007, 107, 1316. https://doi.org/10.1002/qua.21255
  20. Kim, J.-Y.; Im, S.; Kim, B.; Desfrancois, C.; Lee, S. Chem. Phys. Lett. 2008, 451, 198. https://doi.org/10.1016/j.cplett.2007.12.016
  21. Im, S.; Jang, S.-W.; Lee, S.; Lee, Y.; Kim, B. J. Phys. Chem. A 2008, 112, 9767. https://doi.org/10.1021/jp801933y
  22. Kim, J.-Y.; Schermann, J. P.; Lee, S. Bull. Korean Chem. Soc. 2010, 31, 59. https://doi.org/10.5012/bkcs.2010.31.01.059
  23. Hwang, T.-K.; Eom, G.-Y.; Choi, M.-S.; Jang, S.-W.; Kim, J.- Y.; Lee, S.; Lee, Y.; Kim, B. J. Phys. Chem. B 2011, 115, 10147. https://doi.org/10.1021/jp202850s
  24. Csaszar, A. G.; Perczel, A. Prog. Biophys. Mol. Biol. 1999, 71, 243. https://doi.org/10.1016/S0079-6107(98)00031-5
  25. Rogalewicz, F.; Ohanessian, G.; Gresh, N. J. Comput. Chem. 2000, 21, 963. https://doi.org/10.1002/1096-987X(200008)21:11<963::AID-JCC6>3.0.CO;2-3
  26. Godfrey, P. D.; Firth, S.; Heatherley, L. D.; Brown, R. D.; Pierlot, A. P. J. Am. Chem. Soc. 1993, 115, 9687. https://doi.org/10.1021/ja00074a039
  27. Spinor, J.; Sulkes, M. J. Chem. Phys. 1993, 98, 9389. https://doi.org/10.1063/1.465084
  28. Gao, X.; Fischer, G. J. Phys. Chem. A 1999, 103, 4404 https://doi.org/10.1021/jp984457v
  29. Gao, X.; Fischer, G. Spectrochim. Acta 1999, 55, 2329. https://doi.org/10.1016/S1386-1425(99)00133-X
  30. Fernandez-Ramos, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. Z. J. Chem. Phys. 2000, 113, 9714. https://doi.org/10.1063/1.1322084
  31. Lemoff, A. S.; Bush, M. F.; Williams, E. R. J. Phys. Chem. A 2005, 109, 1903. https://doi.org/10.1021/jp0466800
  32. Hu, C. H.; Shen, M.; Schafer, H. F., III. J. Am. Chem. Soc. 1993, 115, 2923. https://doi.org/10.1021/ja00060a046
  33. Bandyopadhyay, P.; Gordon, M. S; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2002, 116, 5023. https://doi.org/10.1063/1.1433503
  34. Julian, R. R.; Jarrold, M. F. J. Phys. Chem. A 2004, 108, 10861. https://doi.org/10.1021/jp047369l
  35. Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 8159. https://doi.org/10.1021/ja00136a013
  36. Ding, Y.; Krogh-Jespersen, K. Chem. Phys. Lett. 1992, 199, 261. https://doi.org/10.1016/0009-2614(92)80116-S
  37. Rodziewicz, P.; Doltsinis, N. L. Chem. Phys. Chem. 2007, 8, 1959. https://doi.org/10.1002/cphc.200700252
  38. Blom, M. N.; Compagnon, I.; Polfer, N. C.; Helden, G. V.; Meijer, G.; Suhai, S.; Paizs, B.; Oomens, J. J. Phys. Chem. A 2007, 111, 7309 https://doi.org/10.1021/jp070211r
  39. Kamariotis, A.; Boyarkin, O. V.; Mercier, S. R.; Beck, R. D.; Bush, M. F.; Williams, E. R.; Rizzo, T. R. J. Am. Chem. Soc. 2006, 128, 905. https://doi.org/10.1021/ja056079v
  40. Stepanian, S. G.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A 1999, 103, 4404. https://doi.org/10.1021/jp984457v
  41. Jockusch, R. A.; Lemoff, A. S.; Andrew, S.; Williams, E. R. J. Phys. Chem. A 2001, 105, 10929. https://doi.org/10.1021/jp013327a
  42. Hernaìndez, B.; Pfluger, F.; Nsangou, M.; Ghomi, M. J. Phys. Chem. B 2009, 113, 3169. https://doi.org/10.1021/jp809204d
  43. Finnegan, S.; Agniswamy, J.; Weber, I. T.; Gadda, G. Biochemistry 2010, 49, 2952. https://doi.org/10.1021/bi902048c
  44. Novak, W. R. P.; Wang, P.-F.; McLeish, M. J.; Kenyon, G. L.; Babbitt, P. C. Biochemistry 2004, 43, 13766. https://doi.org/10.1021/bi049060y
  45. Nakagawa, S. H.; Tager, H. S.; Steiner, D. F. Biochemistry 2000, 39, 15826. https://doi.org/10.1021/bi001802+
  46. Lee, C.; Yang, W.; Parr, R. P. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  47. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  48. Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. https://doi.org/10.1039/b810189b
  49. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Wallingford CT, 2009.
  50. Stepanian, S. G.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A 1999, 103, 4404. https://doi.org/10.1021/jp984457v
  51. Linder, R.; Nispel, M.; Häber, T.; Kleinermanns, K. Chem. Phys. Lett. 2005, 409, 260. https://doi.org/10.1016/j.cplett.2005.04.109

Cited by

  1. canonical conformers vol.4, pp.31, 2014, https://doi.org/10.1039/C4RA01217H
  2. Solvent effects on the structures and vibrational features of zwitterionic dipeptides: L-diglycine and L-dialanine vol.21, pp.8, 2015, https://doi.org/10.1007/s00894-015-2718-x
  3. Effects of Microsolvating Water on the Stability of Zwitterionic vs. Canonical Diglycine vol.35, pp.3, 2012, https://doi.org/10.5012/bkcs.2014.35.3.798