DOI QR코드

DOI QR Code

The Synthetic Melanin Nanoparticles Having An Excellent Binding Capacity of Heavy Metal Ions

  • Received : 2012.07.16
  • Accepted : 2012.08.20
  • Published : 2012.11.20

Abstract

Spherical-shape melanin nanoparticles with good water-dispersibility were successfully synthesized by a simple oxidation polymerization of 3,4-dihydroxy-phenylalanin (DOPA) with $KMnO_4$. Similar features to those known from natural and synthetic melanin polymers were observed from prepared melanin nanoparticles by FT-IR, UV-Vis., and ESR spectroscopic methods. Their binding ability with several heavy metal ions from aqueous solution was quantitatively investigated, and the maximum binding capacities with melanin nanoparticles to lead, copper, and cadmium ions were obtained as 2.45, 2.17 and 1.88 mmol/g, respectively, which are much larger values than those reported from natural and synthetic melanin polymers. The large binding capacity and fast binding rate of melanin nanoparticles to metal ions can make them an excellent candidate for the remediation of contaminated water.

Keywords

References

  1. Meredith, P.; Sarna, T. Pigm. Cell Res. 2006, 19, 572. https://doi.org/10.1111/j.1600-0749.2006.00345.x
  2. Mason, H. S. J. Biolog. Chem. 1948, 172, 83.
  3. Raper, H. S. Physiol. Rev. 1928, 8, 245. https://doi.org/10.1152/physrev.1928.8.2.245
  4. Aroca, P.; Solano, F.; Garcia- Borron, J. C.; Lozano, J. A. J. Biochem. Biophys. Methods 1990, 21, 35. https://doi.org/10.1016/0165-022X(90)90043-C
  5. Liu, Y.; Simon, J. D. Pigm. Cell Res. 2005, 18, 42. https://doi.org/10.1111/j.1600-0749.2004.00197.x
  6. Simon, J. D.; Hong, L.; Peles, D. N. J. Phys. Chem. B 2008, 112, 13201. https://doi.org/10.1021/jp804248h
  7. Dadachova, E.; Bryan, R. A.; Howell, R. C.; Schweitzer, A. D.; Aisen, P.; Nosanchuk, J. D.; Casadevall, A. Pigm. Cell Melanoma R 2008, 21, 192.
  8. Hung, Y. C.; Sava, V. M.; Juang, C. L.; Yeh, T. C.; Shen, W. C.; Huang, G. W. S. J. Ethnopharmacol. 2002, 79, 75. https://doi.org/10.1016/S0378-8741(01)00358-0
  9. Hong, L.; Simon, J. D. J. Phys. Chem. B 2007, 111, 7938. https://doi.org/10.1021/jp071439h
  10. Potts, A. M. Invest. Ophth. Vis. Sci. 1964, 3, 405.
  11. Tisma, M.; Znidarsic-Plazl, P.; Plazl, I.; Zelic, B.; Vasic-Racki, D. Chem. Biochem. Eng. Q 2008, 22, 307.
  12. Boyer, R. F. Abstr. Pap. Am. Chem. S 1984, 188, 34.
  13. Nofsinger, J. B.; Eibest, L. M.; Gold, K. A.; Simon, J. D. Pigm. Cell Res. 2000, 13, 179. https://doi.org/10.1034/j.1600-0749.2000.130310.x
  14. Bowness, J. M.; Morton, R. A.; Shakr, M. H.; Stubbs, A. L. Biochem. J. 1952, 51, 521. https://doi.org/10.1042/bj0510521
  15. White, L. P. Nature 1958, 182, 1427. https://doi.org/10.1038/1821427a0
  16. Potts, A. M.; Au, P. C. Exp. Eye Res. 1976, 22, 487. https://doi.org/10.1016/0014-4835(76)90186-X
  17. Felix, C. C.; Hyde, J. S.; Sarna, T.; Sealy, R. C. J. Am. Chem. Soc. 1978, 100, 3922. https://doi.org/10.1021/ja00480a044
  18. Sarzanini, C.; Mentasti, E.; Abollino, O.; Fasano, M.; Aime, S. Mater. Chem. 1992, 39, 243.
  19. Hong, L.; Liu, Y.; Simon, J. D. Photochem. Photobio. 2004, 80, 477. https://doi.org/10.1562/2004-05-17-RA-172.1
  20. Samokhvalov, A.; Liu, Y.; Simon, J. D. Photochem. Photobio. 2004, 80, 84. https://doi.org/10.1562/2004-01-18-RA-047.1
  21. Watt, A. A. R.; Bothma, J. P.; Meredith, P. Soft Matter 2009, 5, 3754. https://doi.org/10.1039/b902507c
  22. Hong, L.; Simon, J. D. Photochem. Photobio. 2009, 81, 517.
  23. Commoner, B.; Townsend, J.; Pake, G. E. Nature 1954, 174, 689. https://doi.org/10.1038/174689a0
  24. Robinson, G. M.; Smyth, M. R. Analyst 1997, 122, 797. https://doi.org/10.1039/a701844d
  25. Di, J. W.; Bi, S. P. Spectrochim. Acta A 2003, 59, 3075. https://doi.org/10.1016/S1386-1425(03)00127-6
  26. Afkhami, A.; Nematollahi, D.; Khalafi, L.; Rafiee, M. Int. J. Chem. Kinet. 2005, 37, 17. https://doi.org/10.1002/kin.20046
  27. Lauren, M. H.; Wilker, J. J. J. Mater. Sci. 2007, 42, 8934. https://doi.org/10.1007/s10853-007-1648-0
  28. Herlinger, E.; Jameson, R. F.; Linert, W. J. Chem. Soc., Perkin Trans. 2 1995, 259.
  29. Bruenger, F. W.; Stover, B. J.; Atherton, D. R. Radiat. Res. 1967, 32, 1. https://doi.org/10.2307/3572300
  30. Boggess, R. K.; Martin, R. B. J. Am. Chem. Soc. 1975, 97, 3076. https://doi.org/10.1021/ja00844a026
  31. Pilbrow, J. R.; Carr, S. G.; Smith, T. D. J. Chem. Soc. A: Inorganic, Physical, Theoretical 1970, 723. https://doi.org/10.1039/j19700000723
  32. Sarna, T.; Hyde, J.; Swartz, H. Science 1976, 192, 1132. https://doi.org/10.1126/science.179142
  33. Blois, M. S.; Zahlan, A. B.; Maling, J. E. Biophys. J. 1964, 4, 471. https://doi.org/10.1016/S0006-3495(64)86797-7
  34. Sarna, T.; Lukiewicz, S. Folia Histochem. Cytochem. 1972, 10, 265.
  35. Liu, Y.; Hong, L.; Kempf, V. R.; Wakamatsu, K.; Ito, S.; Simon, J. D. Pigm. Cell Res. 2004, 17, 262. https://doi.org/10.1111/j.1600-0749.2004.00140.x
  36. Zhang, L.-M.; Chen, D.-Q. Coll. Surfaces A: Physicochem. Eng. Aspects 2002, 205, 231. https://doi.org/10.1016/S0927-7757(02)00039-0
  37. Pan, B.; Qiu, H.; Pan, B.; Nie, G.; Xiao, L.; Lv, L.; Zhang, W.; Zhang, Q.; Zheng, S. Water Res. 2010, 44, 815. https://doi.org/10.1016/j.watres.2009.10.027
  38. Duran, A.; Soylak, M.; Tuncel, S. A. J. Hazard. Mater. 2008, 155, 114. https://doi.org/10.1016/j.jhazmat.2007.11.037
  39. Hai, B.; Wu, J.; Chen, X.; Protasiewicz, J. D.; Scherson, D. A. Langmuir 2005, 21, 3104. https://doi.org/10.1021/la0487139
  40. Zhao, G. X. S.; Lee, J. L.; Chia, P. A. Langmuir 2003, 19, 1977. https://doi.org/10.1021/la026490l

Cited by

  1. Dopa/Catechol-Tethered Polymers: Bioadhesives and Biomimetic Adhesive Materials vol.54, pp.3, 2014, https://doi.org/10.1080/15583724.2014.881373
  2. Site-Specific In Situ Synthesis of Eumelanin Nanoparticles by an Enzymatic Autodeposition-Like Process vol.16, pp.5, 2015, https://doi.org/10.1021/acs.biomac.5b00187
  3. Water Soluble Melanin of Streptomyces lusitanus DMZ3 Persuade Synthesis of Enhanced Bio-medically Active Silver Nanoparticles vol.26, pp.4, 2015, https://doi.org/10.1007/s10876-014-0798-x
  4. Evaluation of the Practicality of Melanin as a Photodynamic-Inactivation Photosensitizer by Its Nanonization vol.28, pp.6, 2015, https://doi.org/10.2494/photopolymer.28.739
  5. On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly(AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties vol.5, pp.106, 2015, https://doi.org/10.1039/C5RA18965A
  6. One-pot green synthesis of eumelanin: process optimization and its characterization vol.5, pp.59, 2015, https://doi.org/10.1039/C5RA01962A
  7. Melanin: A Naturally Existing Multifunctional Material vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1029
  8. Enzyme-Mediated In Situ Synthesis and Deposition of Nonaggregated Melanin Protoparticles vol.301, pp.7, 2016, https://doi.org/10.1002/mame.201500315
  9. Nanoarchitecturing of Natural Melanin Nanospheres by Layer-by-Layer Assembly: Macroscale Anti-inflammatory Conductive Coatings with Optoelectronic Tunability vol.18, pp.6, 2017, https://doi.org/10.1021/acs.biomac.7b00336
  10. The Supramolecular Buildup of Eumelanin: Structures, Mechanisms, Controllability vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091901
  11. Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress vol.117, pp.6, 2015, https://doi.org/10.1063/1.4907997
  12. Multi-scale Assembly in Nano-scaled Sepia Melanin Natural Dye vol.2, pp.7, 2012, https://doi.org/10.1016/j.matpr.2015.08.028
  13. Efficient Binding of Heavy Metals by Black Sesame Pigment: Toward Innovative Dietary Strategies To Prevent Bioaccumulation vol.64, pp.4, 2012, https://doi.org/10.1021/acs.jafc.5b05191
  14. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites vol.13, pp.4, 2016, https://doi.org/10.1021/acs.molpharmaceut.5b00783
  15. Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach vol.122, pp.24, 2012, https://doi.org/10.1021/acs.jpcb.8b02304
  16. Gadolinium Doping Enhances the Photoacoustic Signal of Synthetic Melanin Nanoparticles: A Dual Modality Contrast Agent for Stem Cell Imaging vol.31, pp.1, 2012, https://doi.org/10.1021/acs.chemmater.8b04333
  17. Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals vol.123, pp.11, 2012, https://doi.org/10.1021/acs.jpcb.8b11994
  18. Enzyme-Lignin Nanocapsules Are Sustainable Catalysts and Vehicles for the Preparation of Unique Polyvalent Bioinks vol.20, pp.5, 2019, https://doi.org/10.1021/acs.biomac.9b00198
  19. Preparation of Bio‐Inspired Melanin Nanoplatforms Chelated with Manganese Ions as a Potential T1 MRI Contrast Agent vol.4, pp.19, 2019, https://doi.org/10.1002/slct.201802926
  20. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis vol.20, pp.16, 2012, https://doi.org/10.3390/ijms20163943
  21. Synthesis of Ultrasmall Synthetic Melanin Nanoparticles by UV Irradiation in Acidic and Neutral Conditions vol.2, pp.10, 2012, https://doi.org/10.1021/acsabm.9b00747
  22. Synthesis of Melanin Mediated Silver Nanoparticles from Aeromonas sp. SNS Using Response Surface Methodology: Characterization with the Biomedical Applications and Photocatalytic Degradation of Brilli vol.27, pp.11, 2012, https://doi.org/10.1007/s10924-019-01529-5
  23. Adsorption of molybdenum by melanin vol.24, pp.None, 2012, https://doi.org/10.1186/s12199-019-0791-y
  24. Recent advances in melanin-like nanomaterials in biomedical applications: a mini review vol.23, pp.1, 2012, https://doi.org/10.1186/s40824-019-0175-9
  25. Mechanism of UVA Degradation of Synthetic Eumelanin vol.20, pp.12, 2019, https://doi.org/10.1021/acs.biomac.9b01433
  26. The effect of metal ions on endogenous melanin nanoparticles used as magnetic resonance imaging contrast agents vol.8, pp.1, 2012, https://doi.org/10.1039/c9bm01580a
  27. Ultra-small pyomelanin nanogranules abiotically derived from bacteria-secreted homogentisic acid show potential applications in inflammation and cancer vol.10, pp.1, 2012, https://doi.org/10.1007/s12668-019-00689-x
  28. Characterization of broadband complex refractive index of synthetic melanin coatings and their changes after ultraviolet irradiation vol.117, pp.20, 2012, https://doi.org/10.1063/5.0024229
  29. Effect on Human Vascular Endothelial Cells of Au Nanoparticles Synthesized from Vitex mollis vol.6, pp.38, 2012, https://doi.org/10.1021/acsomega.1c01506
  30. Contrast agents for photoacoustic imaging: a review of stem cell tracking vol.12, pp.1, 2021, https://doi.org/10.1186/s13287-021-02576-3